
Segmentation of Building Facades Using Procedural Shape Priors

Olivier Teboul1,2 Loı̈c Simon1∗ Panagiotis Koutsourakis1,3 Nikos Paragios1,4

1 Laboratoire MAS, Ecole Centrale Paris, 2 Microsoft France
3 Computer Science Department, University of Crete, 4 INRIA Saclay, GALEN Group

Abstract

In this paper we propose a novel approach to the percep-
tual interpretation of building facades that combines shape
grammars, supervised classification and random walks.
Procedural modeling is used to model the geometric and
the photometric variation of buildings. This is fused with vi-
sual classification techniques (randomized forests) that pro-
vide a crude probabilistic interpretation of the observation
space in order to measure the appropriateness of a proce-
dural generation with respect to the image. A random ex-
ploration of the grammar space is used to optimize the se-
quence of derivation rules towards a semantico-geometric
interpretation of the observations. Experiments conducted
on complex architecture facades with ground truth validate
the approach.

1. Introduction
Segmentation of building facades has become an impor-

tant problem in computer vision of late. It is vital for ac-
curate image-based modeling and urban scene understand-
ing. The purpose of this activity is to discover the differ-
ent regions of a facade image and assign each of them a
particular semantic label(walls, windows, roof, etc). The
main difficulty rests on the significant variations that may
exist between buildings, even for ones corresponding to the
same architectural style. Furthermore, their visual appear-
ance spans an infinite space, due to either their internal char-
acteristics (walls, windows, roof) or their external ones (oc-
clusions, lighting, reflectance properties, etc.).

Traditionally, segmentation problems have been tackled
through model-based or model-free methods. Model-free
approaches make no assumption on the geometry and the
appearance of facade components and aim at grouping pix-
els according to feature similarities. Among these tech-
niques, normalized cuts [17], MRFs [9], mean shift [3] and
snakes/active contours/level sets [8, 15] have been very suc-
cessful. Unfortunately, these methods are prone to failure
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Figure 1. Overview of the method. From left to right: original
image, classification-based segmentation, and segmentation with
procedural shape prior.

simply because pixels belonging to the same facade ele-
ment do not necessarily share common visual characteris-
tics. Model-based methods provide a segmentation which
is a compromise between the available image support and a
prior knowledge. In some cases, the solution is constrained
to rely on a manifold (active shape [4], active appearance
models [5]), while in other cases the distance from a mani-
fold is penalized like for example snakes and level sets with
priors or wavelet-like representations [14]. The main as-
sumption of these methods is that the space of solutions can
be parameterized in a convenient way. This is far from be-
ing sufficient when dealing with building facades, simply
because no static parameterization is generic enough to en-
compass different facade layouts.

Recently, a third class of methods has been introduced
in order to cope with the aforementioned limitations. Pro-
cedural models like shape grammars [6, 19] offer a flexi-
ble and powerful tool to account for such variability while
being compact and providing a semantic representation of
the obtained results. The idea is to represent buildings by
using a set of replacement rules and a dictionary of basic
shapes. These methods have been extensively used in com-
puter graphics [12, 16]. In spite of the well-known curse
of dimensionality, some attempts have been made to tighten
the image support with the dynamic nature of a procedu-
ral model in computer vision. The authors in [13] use mu-
tual information to identify a repetitive pattern on a regular
grid. The result is then turned into a grammar formulation.
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Such an approach is based on the very strong assumption of
global statistical correlation between the generation process
and the observed image. In [1] the authors also describe the
use of a shape grammar, but somewhat differently explore
the space of building through a reversible jumps Monte-
Carlo Markov Chain, and measure the appropriateness of
the obtained models on the image itself. However, the sup-
ported buildings turn out to present a rather regular layout,
with well defined visual appearance. Another solution has
been recently proposed in [10] through an MRF formulation
to address a similar problem. Such an approach consists of a
fixed derivation tree that encompasses the maximum allow-
able variation, and is based on appearance self-similarities.
Yet, it proposes a rather coarse shape representation. Such
a method seems to be well suited for image-based build-
ing modeling but not for facade segmentation. Indeed, it
provides repetitive patterns but does not accurately sepa-
rate one semantic element from another. The found patterns
show at the same time wall, window, and balcony, whereas
an accurate facade segmentation is expected to distinguish
between these different classes.

Our work’s main contribution is to combine a powerful
machine learning approach with procedural modeling as a
shape prior so as to fit the purpose of multi-class facade seg-
mentation. Generic shape grammars are constrained so as
to express buildings only. Non-linear classification meth-
ods, namely randomized forests, are used to determine a
relationship between the semantic elements of the gram-
mar and the observed image support. Then the segmen-
tation task can be considered as an optimization problem
with respect to the derivation of the grammar. The main
difficulty here is to efficiently decrease the energy without
losing any of the flexibility provided by the grammar. In or-
der to do so, we adopt an active search technique based on
random walks. The outcome of this method is an accurate
semantic representation of the building that is able to deal
with the above-mentioned limitations. Promising results on
complex Parisian architectures demonstrate the potential of
this method. The work-flow of our approach is depicted in
Fig.1.

The remainder of this paper is organized as follows:
section 2 describes the 2D shape grammar while section
3 shows how to learn the appearance of semantics using
randomized forests. In section 4 we present our segmen-
tation framework which ties image support and procedu-
ral shape prior together. Section 5 provides experimental
results along with both qualitative and quantitative evalua-
tions.

2. 2D Shape Grammar for Architecture
Shape grammars can be used to efficiently describe com-

plex but highly structured geometries, like fractals, plants
and buildings. Inspired from the pioneering work of Stiny

Figure 2. Derivation tree representing the procedural geometry.
Each node represents an atomic shape, carrying a scope and a
basic shape. The leaves (colored nodes) define the final shape,
whereas the white nodes correspond to intermediate states.

and Gips [6, 19], they have emerged as a powerful tool to
describe a great variety of architectural styles. Unlike clas-
sical representations which are static, shape grammars pro-
vide a dynamic way of describing the geometry as the re-
sult of a generation procedure. Shapes (unlike conventional
vertex, edge and polygon representations) are incrementally
built using a sequence of rules combined with some basic
dictionary elements. As a consequence, they are intrinsi-
cally tying the geometry with semantics. The rules manip-
ulate shapes through semantico-geometric building blocks
called basic shapes.

2.1. Generic 2D Split Grammar

A shape grammar G is described by a dictionary of K
basic shapes D = {b1, b2, . . . , bK} and a set of N rules
R = {r1, r2, . . . , rN}.

A basic shape is the combination of a semantic symbol
and an appearance. In this work we consider the appearance
of the basic shape as a square. It does not carry a notion
of absolute geometry. Basic shapes are positioned in the
2D plane through a bounding box called scope creating an
atomic shape. Atomic shapes are manipulated through re-
placing rules, that turn a left-hand side atomic shape LHS
into some atomic shapes on the right-hand side RHS un-
der a possible condition. We usually write a rule as follows
condition : LHS → RHS.

The split rule is the only kind of rule we allow in our
framework. It decomposes the scope of the LHS along
a splitting direction into several chunks. Their geometries
are given by a fixed number s of non negative parameters
(x1, . . . , xs) that correspond to the sizes of the chunks. We
constrain the sum x =

∑
i xi of the parameters to be equal

to the length of the scope of the LHS along the split di-
rection, by adapting the parameters. Therefore, any set of
parameters leads to a valid split. This property allows us to
deal with different facade topologies using a single rule.



The derivation process takes an atomic shape called ax-
iom, and keeps replacing the existing atomic shapes using
the grammar rules. In order to keep track of the sequence of
rules, rather than replacing them, we add the RHS atomic
shapes as the children of the LHS, constructing a deriva-
tion tree. The final shape is defined by the leaves of the
derivation tree (see Fig.2).

2.2. A Specific Grammar for Facades

In order to create a realistic facade, we propose the fol-
lowing derivation scheme made of 6 rules. We use a regular
expressions-like formalism, in which the ’.’ character refers
to the concatenation operator.

Rule LHS → RHS DoF

1. IM → GF.FA.AT.Sky 3
2. GF → Sh.Do.Sh 2
3. FA → (Ba?.FL.Wa)∗ n1

4. FL → Wa.(TL.Wa)∗ n2

5. AT → Rf.(TL.Rf)∗ n2

6. TL → Ba?.Wi 1

Therefore the vocabulary of basic shapes is defined by
the symbols: IM (Image), AT (Attic), FA (Facade), GF
(GroundFloor), FL (Floor), TL (Tile), Sky, Wa (Wall), Wi
(Window), Sh (Shop), Do (Door), Rf (Roof) Ba (Balcony),
where the bold face symbols are said to be terminals.

On average, the grammar has around 40 degrees of free-
dom, but this number may vary since the number of degrees
of freedom of rules 3, 4, and 5 is not clearly defined. We
make n1 and n2 big enough so as to handle the majority of
facade layouts. For this paper we set n1 = 13 and n2 = 11.
This allows the generated model to exhibit up to 6 floors
and 10 windows per floor.

With the same derivation tree topology, a different set of
parameters leads to different geometric instances. However,
by following the derivation process as it has been defined,
we allow a huge number of shapes to emerge whereas a
lot of them are very unlikely to represent real buildings. It
turns out that a pretty natural constraint can be enforced in
the derivation to handle this problem. We give more details
about it in the next section.

2.3. Grammar Factorization

The left hand-side of Fig.3 illustrates the kind of incon-
sistent facades the current derivation scheme can lead to.
For instance, the first floor may be split differently from the
second one, which can prevent windows from being verti-
cally aligned. This is not usually the case for the vast major-
ity of buildings. On the contrary, the right hand-side shows
the kind of constraint we want to impose on the outgoing
facade.

Therefore, the grammar tree is factorized so as to enforce
the derivation to produce realistic facades only. Hence,

(a) No Factorization (b) Factorization

Figure 3. Effect of grammar factorization on randomly generated
buildings. In (a) the windows are not aligned along the facade. In
(b), the building structure is consistent from a floor to another.

rather than deriving the atomic shapes independently, we
now force the ones sharing the same semantics (for exam-
ple FL) to be derived in exactly the same way. In other
words, the exact same rule with the exact same parameters
will be applied on all the nodes from a given semantic la-
bel. For our example in Fig.2 this basically means that the
rule applied on each of the sub-trees representing the floors
is the same. We also force the attic (AT) to be split in the
same way as any other floor (FL).

By applying a factorization of the grammar, we end
up with a fixed grammar tree spanning a smaller space of
shapes. The factorized grammar better expresses realistic
architecture, and still covers a large space of facades.

2.4. The Procedural Space

After factorization, it turns out that all the buildings are
ultimately defined by a fixed number of rules to be applied.
We denote π = (r1, r2, . . . , rM ) this sequence of rules or
policy. Applied on an axiom A, the grammar provides a
specific building instance. Thus a shape and a policy are
two representations of the same object.

Given an axiom shape A, we can now define the proce-
dural space of A with respect to a grammar G as the set of
shapes S that can be generated using G starting from A:

S(A,G) = {π = (r1, r2, . . . , rM )|ri ∈ G, i ≤M} (1)

The dimension of the procedural space is:

d(S(A,G)) =
M∑
i=1

DoF (ri) (2)

In the case of our building grammar, the dimension is 30.
If for instance, each parameter lives in a discrete space of
cardinal number 10, then the cardinal number of S(A,G) is
1030. Without factorization, we can expect to have a differ-
ent split for each of the 6 possible floors, 1 for the attic, and
a different small balcony in front of each window. Thus the
number of buildings grows to 1019 × (1011)7 × (101)70 =
10166. If we do not force the (at most) 10 windows to have



Figure 4. Randomly generated facades using the proposed factor-
ized parametric grammar. The parameters (e.g. floor height, wall
width) are randomly chosen among predefined sets.

the same size, then rules 4 and 5 have 16 degrees of free-
dom, and the number of building grows to 10201. Factoriza-
tion prevents the dimension of the procedural space from
growing exponentially with the depth of the derivation tree.

As we can see from this simple computation, incon-
sistent shapes represent the vast majority of the procedu-
ral space before factorization. Not only does factorization
reduce the dimension of the procedural space, but it also
makes sense from an architectural point of view. It leads
to a relatively small dimension of the space of shapes while
allowing the grammar to express a large amount of facades.
In Fig.4 we show some results of random generations using
the proposed factorized grammar on a single axiom. As we
can see the buildings show diverse structures.

3. Learning a Shape Dictionary with Random-
ized Forests

In this section, we introduce a supervised method to
learn the appearance of the grammar dictionary in the im-
ages, in order to be able to identify them in the later seg-
mentation task (see section 4).

3.1. Randomized Forest for Image Classification

Randomized Forests [2] are quite powerful classifiers.
They have been used in numerous problems in computer
vision such as object recognition [11], object classification
coupled with bags of words techniques [18] or with graph
cuts [20]. We adopt this machine learning technique in or-
der to identify systematically the semantic elements of the
facade. The output of the randomized forest is then used to
set up a cost function for each model given an image (see
section 4).

A randomized forest is used for supervised classification
among C classes and is made of a set of T random decision
trees. The leaves keep track of the visits of input feature
vectors (see Fig.5). Internal nodes consist of a simple ran-
dom test on a feature vector given as input.

During the training phase the trees are fed with labeled
feature vectors. When a feature vector, associated to a label,
is dropped into the tree and reaches an internal node, it goes
down to the left or the right child depending on whether

Figure 5. Principle of Randomized Tree. A patch is dropped in the
decision tree. The tests are randomly built over the elements of the
patch. Depending on the outcome of the test, the path is sent to one
of the two children. The tree leaves record the visits of different
classes, that can be seen as posterior probabilities at testing time.

the test is true or not. After d tests, the vector falls into a
leaf where the number of visits per label is updated. Thus,
each leaf holds a histogram h = (h1, . . . , hC) containing
the number of feature vectors which have fallen there for
each of the C classes.

During the testing phase, an unlabeled feature vector is
dropped in each tree of the forest. In a given tree τ , the
feature vector falls in the leaf lτ in which a histogram of
visits is stored. Once normalized, this histogram actually
provides an estimation of the posterior probability for the
feature vector to belong to each class c, given the leaf lτ in
which the patch has ended up:

P (c|lτ ) =
hc∑
i hi

(3)

Then, the probability over the forest is given by averag-
ing the probabilities of all the trees.

P (c|(l1, . . . , lT )) =
1
T

T∑
τ=1

P (c|lτ ) (4)

In our case, we want to classify all the pixels of an im-
age. The feature vectors we consider are patches centered
on the pixels. The number of trees of the forest, the size
of the patches as well as the depth of the decision trees are
discussed in section 3.2. Ultimately, the decision tests can
be of two varieties: comparing the values of two pixels of
the patch, or comparing the value of a pixel with a random
threshold.

We train the randomized forest with annotated examples
from Parisian buildings. This choice is not too restrictive
since it enables us to target a very broad class of buildings
found outside of Paris as well. The pictures are supposed to
be rectified. For each image, we label by hand the various
semantic elements of the facade: windows, walls, balconies,
doors, roof, shop, sky and outliers. Images were taken in
different lighting and weather conditions. Fig.7(a) depicts
the kind of data we use for training. The whole database,



Figure 6. Evolution of the detection rates with respect to the depth
of the randomized trees, and the size of the patches. They are
mainly sensitive to the depth of the forest.

including the ground truth images, is available on-line at:
www.mas.ecp.fr/vision/Personnel/teboul/data.html.

3.2. Randomized Forest Parameters

A randomized forest has 3 main degrees of freedom: the
depth of the trees, the number of trees and the size of the
feature vectors. According to [11], 10 trees ensure a healthy
level of robustness. In order to choose the two other param-
eters, we basically train forests with depths from 5 to 21,
and with patch sizes from 7 to 17. We then test the trained
forest on a data set of 10 new images outside of the training
set for which we have built a ground truth by hand. We at-
tribute for each pixel the most probable label according to
the obtained posterior probability. Then, we compare the
classified label with the ground truth. Fig.6 sums up the
detection rates for each class.

We can notice that the size of the patches has small im-
pact on the classification, whereas the detection rates are
quite sensitive to the depth of the forest. Especially difficult
classes, such as windows or shops, need more decision tests
to be well classified, whereas easy classes, such as sky, tend
to have slightly better results on shallow forests.

As we can see in the first graph of Fig.6, the curves are
first increasing and then occasionally decreasing. This sec-
ond trend is the consequence of over-fitting. A very deep
forest will tend to over-fit the training data, making impos-
sible any generalization. The depth for which the forest
is over-fitting actually depends on the visual complexity of
each class. Therefore, deciding a fixed depth entails always
a trade-off. Since windows are key elements in the building
structure, we give more weight to a good window detection
rate, and therefore decide to use a forest made of 10 trees,
of depth 18 and with patches of size 15× 15.

3.3. Segmentation via Independent Classification

Given that we can decide what is the best class for each
pixel according to the classifier, we can perform a first seg-
mentation of the image, in which each pixel is associated to
a class independently from any other pixel.

Fig.7(c) shows the probabilities obtained for each class
on a single image. We then build a confusion matrix ob-

(a) image (b) truth (c) result (d) window (e) wall

Figure 7. (a) Original data. (b) Label image (by hand). Each color
represents a label. (c) Most probable label (the same color space).
(d), (e) probability for each pixel to be a window and a wall. The
values increase from red (p=0) to blue (p=1).

tained after applying the classification on the testing set of
10 images mentioned above. On line i and column j of the
confusion matrix is the percentage of pixels that belong to
class i according to the ground truth and have been classi-
fied as j by the Randomized Forest classifier. In an ideal
case, the confusion matrix would be diagonal.



30 11 13 7 12 14 3 8 2
3 62 12 4 1 6 1 10 1
11 9 48 7 7 4 0 13 1
1 2 2 81 0 0 0 14 0
6 9 6 0 57 12 9 0 1
9 13 8 0 12 55 2 0 1
1 0 0 0 4 6 89 0 0
6 7 9 28 6 1 1 40 2
9 10 15 6 14 18 11 14 3
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Unsurprisingly the windows are poorly detected (30%),
but the classification is still better than random (11%). In-
deed, windows are not visually invariant, and even worse,
they show the appearance of other objects of the scene
through reflexion or transparency. If we consider the
columns of the confusion matrix, we can conclude that
when an object is classified as a window, it is truly a win-
dow 40% of the time. The randomized forest still separates
windows from the other classes, even though it does not de-
tect them very well. Finally, such a segmentation definitely
lacks structure and is not directly exploitable. Therefore,
we then combine this rather good but unstructured classifi-
cation with our procedural framework.

4. Procedural Segmentation Framework
Grammar factorization implies that a facade is equiva-

lent to a specific sequence of M rules, or policy π (in our
case M = 6). As a consequence, segmenting the facade



is viewed as choosing the M rules which generate a facade
that best fits the image. Once we have defined an energy
function E(π) (see section 4.1) our procedural segmenta-
tion problem can be casted as an enegy minimization:

π∗ = arg min
π∈S(A,G)

E(π) (5)

Let us consider, without loss of generality, that we are
dealing with rectified images. This preprocessing step can
be performed either automatically [7] or manually, when the
automated procedure fails.

4.1. Classifier-based Facade Energy

The energy or score function should quantify the appro-
priateness of a given policy π with respect to the image. The
leaf nodes of the facade tree are taken into account. There-
fore a building provides a segmentation of the image into
regions Rs, where s is a semantic label such as window,
door, balcony, etc.

Given this segmentation, the energy is based on the prob-
ability estimations provided by the randomized forest. As
discussed in section 3, for each region Rc, we can com-
pute the probability p(x ∈ c) of each pixel x belonging to
the class c expected from the grammar. The probability of
the whole region Rc belonging to class c can be computed
as the joint probability of all its pixels. Assuming that the
pixels have independent labels, the joint probability is fac-
torized:

p(Rc ∈ c) = p(x ∈ c, x ∈ Rc) =
∏
x∈Rc

p(x ∈ c) (6)

We can turn this into an energy using Boltzmann’s trans-
formation:

E(Rc ∈ c) = −
∑
x∈Rc

log p(x ∈ c) (7)

Then, the energy of a whole policy π is computed as the
sum of the energies of all the regions {Ri} (with label ci)
in the segmentation provided by π:

E(π) = E(Ri ∈ ci,∀i) = −
∑
i

∑
x∈Ri

log p(x ∈ ci) (8)

For a given image, comparing the energies of two differ-
ent buildings π1 and π2 is meaningful since they are both
defined as a sum of positive numbers over the same image.

4.2. The Random Walk Algorithm

Although it seems at first sight that the energy is eas-
ily differentiable, and therefore candidate to gradient de-
scent methods, the number of parameters may vary. A given

derivation of the grammar will lead, for instance, to a certain
number of floors and windows, making it hopeless to avoid
local minima. On the other hand, a random walk is better
suited to deal with the dynamic nature of the problem. It
is important to notice that in spite of a varying number of
parameters, the energies are always comparable, since they
are all computed as a sum over the entire image.

The idea of the optimization algorithm is quite simple.
We start from an initial seed policy, and randomly consider
in a neighborhood of the seed if there could be policies that
score better with respect to the input image and the defined
energy. If so, the seed is updated, and we go on exploring
the neighborhood of the new one, as specified by the fol-
lowing algorithm. We resample a policy by perturbing all
its rules. Section 4.3 explains how to sample new rules on
the fly.

Initial Seed π0 = (r01, . . . , r
0
6)

while n < nmax:
Perturb πn k times: {π1

n, . . . , π
k
n}

compute E(πi
n), ∀i

πn+1 = argmini E(πi
n)

The initial seed is chosen by using a regular split, ac-
cording to the image dimensions and probable values of
the window dimensions. At the beginning of the process,
we allow the optimizer to search for buildings far from the
initial seed. As the optimization procedure progresses, we
constrain the search for the optimal solution to be closer to
the current seed by decreasing the standard deviation of the
Gaussian law used for sampling (see equation 9). This is
known as the exploitation-exploration trade-off. The more
we explore the procedural space, the more knowledge we
have about it and the more we want to use it. However, we
still have to explore the procedural space from time to time,
in order to avoid falling into local minima.

After about 50 iterations, the algorithm usually con-
verges towards a minimum (see Fig.8). Section 5 shows
results of the proposed method.

4.3. Perturbation Model

From the discussion at section 2 we conclude that a rule
can be viewed as a vector in Rd+, where d is the number of
degrees of freedom of the rule. In order to sample a new
rule r in the neighborhood of a rule r0, we basically follow
the sampling equation 9, using centered Gaussian laws of
given standard deviation σ.

r = r0 +
d∑
j=1

xjδij where xj ∼ N (0, σ),∀j (9)



Figure 8. Evolution of the energy with the iterations. The energy
is decreasing quickly in the first iterations. The random walk al-
gorithm converges after approximately 50 iterations.

where δij ∈ Rd is the vector with 0 everywhere except the
ith component which is 1.

5. Experimental Validation
5.1. Quantitative Validation

The random walk optimization provides a well struc-
tured segmentation of the input image. We compare here
the confusion matrix obtained by segmenting using the clas-
sification method as described in section 3.2, with the pro-
cedural segmentation, on the same set of 10 images with
known ground truth.



81 9 6 0 4 0 0 0 0
5 83 8 1 0 0 0 3 0
13 13 72 0 0 0 0 2 0
0 0 0 71 0 0 0 29 0
8 12 0 0 80 0 0 0 0
6 0 0 0 19 0 75 0 0
2 0 0 0 4 0 94 0 0
0 0 0 5 0 0 0 95 0
23 8 3 14 16 0 10 25 0
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Quantitatively, the confusion matrix is clearly less noisy
and the individual performances per class are significantly
improved. As the grammar imposes on the labeling map
to be piecewise constant, local outliers are easily corrected
to their actual labels. By looking carefully at the rela-
tions between semantic labels, one can notice an emulation
phenomenon. Labels within a rule are helping each other
(e.g. walls and windows). Eventually, as the designed gram-
mar does not deal with chimneys, their “detection rate” is
obviously zero.

5.2. Qualitative Validation

In this section, we show the diversity of results obtained
using the proposed method. Combining an efficient para-

Figure 9. Facade segmentation on a Haussmannian buildings. The
images show challenging illumination variations and occlusions.

metric grammar with a fixed derivation scheme and some
simple classifiers, we are able to handle many challenging
situations.

First, we present three very challenging examples of our
testing set in Fig.1 and Fig.9. In each of them, an impres-
sive amount of information is missing in the raw segmenta-
tion obtained from the classifier only. In the first example
of Fig.9, no walls or windows are detected by the classifier
on the first floor and part of the second one. In the sec-
ond one, the classifier is clearly misguided by the strong
shadow. However, the proposed method takes advantage of
the intrinsic repetitions and regularities of the grammar to
recover the missing windows.

Moreover, Fig.10 shows extra results of segmentation of
Haussmannian buildings (first two rows). On the last row,
we present results obtained with the same classifier on fa-
cades from other architectural styles. These architectures
are not explicitly present in the training set, but do share
similar basic shapes with the Haussmannian style. There-
fore, the Randomized Forest classifiers still provide some
relevant information, and our method is still able to cope
with this kind of data.

6. Conclusion and Future Work

In this paper we have proposed a novel modular ap-
proach to facade image segmentation using procedural
grammars. We first constrain shape grammars towards fixed
tree representations that are able to capture a wide variety of
typologies of architectures. Then, we reduce the grammar
complexity by factorization. We establish a connection be-
tween grammar semantics and images using machine learn-
ing techniques, and we propose a hierarchical, dynamic way
to perform search through a perturbation model. Promis-
ing experimental results demonstrate the potential of the



Figure 10. Segmentation results on different buildings. The first
two rows belong to Haussmannian style. The first image of the last
row belongs to Restauration style (1830), the second one belongs
to Louis XIV style (1680).

method.
The use of more appropriate optimization techniques that

fully exploit the dynamic nature of our generation process
is also a challenging but very promising path. Methods like
neuro-dynamic programming and multi-armed bandits are
some of the methods currently under consideration.
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