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Abstract

In this paper we introduce a novel approach to single
view reconstruction using shape grammars. Our approach
consists in modeling architectural styles using a set of ba-
sic shapes and a set of parametric rules, corresponding
to increasing levels of detail. This approach is able to
model elaborate and varying architectural styles, using a
tree representation of variable depth and complexity. To-
wards reconstruction, the parameters of the rules are op-
timized using image-based and architectural costs. This is
done through an efficient MRF formulation based on the
shape grammar itself. The resulting framework can pro-
duce precise 3D models from single views, can deal with
lack of texture and the presence of occlusions and specular
reflections, while maintaining the ability to cope with very
complex architectural styles. Promising results demonstrate
the potential of our approach.

1. Introduction

There has been an increasing attention in the use of 3D
representations of urban environments during the last few
years. Public authorities, museums, cinematographic stu-
dios, but also industries, providers of car navigation sys-
tems or location-based services have a keen interest. Google
Earth, Live Earth and similar initiatives already offer 3D
city models, but such representations are extremely sim-
plified. This may suffice for a large proportion of build-
ings, but the very types of historic buildings and complex
architectures would not lend themselves to such approach.
Moreover the ambition of realism, many of these industries
express a need in accurate reconstructions of urban environ-
ments. It is precisely the purpose of this article to demon-
strate that the two objectives can be achieved together.
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Many computer vision methods assume that the scene is
being viewed from different view points (multiple images).
Then using some basic geometric constraints, for a given
3D point being observable in different, images one can re-
cover the notion of relative depth [7]. The scalability of
these methods is questionable since it is not always reason-
able to assume the existence of excellent quality multiple
view points per building. At the same time traditional im-
age derived 3D models of individual buildings or even en-
tire cities lack structure. They typically consist of surface
representations, where the fitting of planes is usually as far
as the extraction of structure goes. The resulting polygon
representations are voluminous, and at the same time dif-
ficult to compress. Even the best decimation algorithms
will fail to maintain the relevant structures. When really
pressed for storage space, as in car navigation systems, un-
structured representations will not withstand the required
levels of compression.

Structured representations on the other hand, can ac-
count for crucial concepts like periodicity and symmetry,
so abundant in architecture. This calls for the introduction
of grammars, most probably specific to each of the main
architectural styles, in order to exploit such structure.

In architecture, shape grammars were successfully used
for the analysis, description and construction of architec-
tural designs [16, 5]). In computer graphics, grammar-
based methods are used for the automatic generation of
imaginary building designs, rather than existing ones. Pro-
cedural modeling aims at scalability while image-based re-
construction targets fine reproduction of the scene geome-
try. The CityEngine tool [13, 19, 11] implements a proce-
dural generation scheme from the street-network down to
single buildings . The main limitation of these methods is
the fidelity to the data, since even if the generated model
looks as a member of the modeled class, one has to put con-
siderable effort in order for the model to be an accurate re-
construction of the depicted building.



Figure 1. The 3D reconstruction pipeline : A parametric grammar is optimized with respect to the input rectified image. The resulting
specific grammar is then turned into a 3D model using a procedural engine.

Ideally, one would like to fuse these two ideas to-
wards photo/geometric-realistic 3D modeling with proce-
dural methods. There have been few such attempts to
achieve grammar-based reconstruction. For instance, in
[12] the authors look for repetitive patterns in rectified im-
age of single facades based on mutual information. In [1],
the authors are using rjMCMC (reversible jump Markov
Chain Monte Carlo) sampling and stochastic context-free
grammars made of vertical and horizontal splits, in order
to find out facade structure from images. Similarly in [14],
rjMCMC is considered to explore the derivation tree, and
the grammar in order to evaluate superstructures (e.g. sym-
metry and regularity).

In this paper we present a novel method to use the mod-
eling procedure. The whole pipeline is depicted in Fig. 1. It
uses as input a rectifed image of the building and a paramet-
ric shape grammar. The rectification can be done manually
or automatically using for example [10]. When instancing
the parameters one gets a specific grammar which can gen-
erate a unique 3D building. The goal is to recover the un-
known parameters so that the generated building matches
the image. We formulate this optimization problem within
a Markov Random Field (MRF). The energy minimized by
the MRF mainly relies on similarity measures between sub-
regions of the facade and other low level features. In fact,
none of the terms require a learning stage and so the frame-
work is completely unsupervised. Inference is driven by the
Belief Propagation (BP) algorithm guaranteeing the global
optimum solution [9]. Promising results on images of com-
plex buildings from Paris and London demonstrate the po-
tential of our method.

The paper is organized as follows: section 2 discusses
briefly the grammar-based building generation. In section
3 we describe how to build a proper MRF, in section 4 we
present some results. Section 5 concludes the paper and
presents future work perspectives.

2. Shape Grammars and Model Generation

In this section we describe the scheme we use for the
generation of 3D models. Shape grammars have proved to
be a very powerful tool that fits well with the modeling of
architecture [12, 11, 19]. In this work we use a small subset
of this powerful framework.

2.1. The Shape Grammar Framework

A shape grammar describes howbasic shapesinteract to-
gether through a setreplacement rulesto produce complex
structured geometries. A basic shape carries semantic in-
formation and an appearance (mesh, material, etc), and can
be positioned in the 3D world through a 3D transformation
called ascopeto become anatomic shape. A rule replaces
an atomic shapeLHS by a set of atomic shapesRHS, pos-
sibly under a boolean condition. We denote the rules using
the following notation:

condition : LHS → RHS (1)

The RHS part of the rule is composed of atomic shapes,
that are generally the outputs of procedures calledopera-
tors. The supported operators are:

Transformation operators These are the usual 3D trans-
formations: translation, rotation and scaling along one
of the principal axes, in the local coordinate system of
the atomic shape the operator is applied to. They only
act on scopes.

Splitting operators These operators are calledsplit, repeat
andmirror. They subdivide the scope of theLHS into
smaller scopes along one of the local axis and accord-
ing to the specification inRHS.

Of these the split operator is the most commonly used.
For example the ruleA → split(x; B, C; 0.35, 0.65)
splits the scope of the basic shape with symbolA with
lengthl, along theX axis, into two pieces with lengths



0.35l and0.65l and assigns the symbolsB andC re-
spectively.

Component split operator This operator decomposes a
3D mesh into the set of its faces and creates one atomic
shape for each of them.

Extrude operator This operator can be thought as the re-
verse of the component split operator. It takes a 2D
polygon and creates a new atomic shape having a 3D
mesh, with top and bottom faces being copies of the
original polygon.

Roof operators Mansardor hipped. Just like component
split and extrude, they operate on the meshes of the
atomic shapes. They use the top face of the mesh
of LHS and compute a weighted straight skeleton
[2, 4] of the corresponding polygon. This can be easily
turned into a 3D mesh of the roof.

2.2. The Generation Process

The generation process is tied to a tree structure. The
nodes of this tree correspond to the atomic shapes. The pro-
cess begins with a specific atomic shape calledaxiomas the
root of the tree, which usually represents a polygon that is
the footprint of the building. At each step of the generation
one of the leaves of the tree is selected. Based on the sym-
bol of its atomic shape, a rule is randomly selected among
a set of compatible ones (i.e. rules that have the specified
symbol on theirLHS). When applying the rule, the result-
ing atomic shapes are added as children of the current leaf
node and the shape tree keeps growing during the genera-
tion process. The generation ends when no more rules can
be applied. Only the information at the leaves takes part in
the geometry and the appearance of the final shape. The in-
ternal nodes keep track of the construction steps of the tree,
but do not take part in the appearance of the shape itself.

2.3. Description of the Parametric Grammar

In this section we describe the way the facades we exam-
ine, are modeled by a parametric grammar. The grammar is
actually a simple sequence of five rules: the first extrudes
the footprint and puts a roof placeholder, the second turns
the volume into facades. Then the remaining rules create the
mansard geometry for the roof, split facades into floors and
split floors into windows and wall patches. The rules are
shown in equation 2. Except for the component split and
the mansard rules (second and third rule), the other rules
carry parameters that have to be optimized for later recon-
struction:

Figure 2. A partial derivation tree and the corresponding 3D
model.

axiom →scale(z; V l; hb), translate(z; Rf ; hb)

V l →component-split(Fc1, . . . , F cn)

Rf →mansard(Loft, T op; hl, ht)

Fci →split(z; Gf, F l1, . . . F lm;

h0, h1, . . . hm)

Fli →split(x; Wa1, Win1, . . . , Wink, Wak+1;

w′

1, w1, . . . , wk, w′

k+1)

(2)

The tree corresponding to this grammar is shown in Fig. 2.
The symbols appearing in the above grammar are:

• V l the volume of the building

• Fci the facades

• Gf, F li the ground floor and the rest of the floors.

• Wai, Wini wall patches and windows.

The parameters of this grammar are the following:

• hb, the height of the building.

• h0 andh1, . . . , hn, the height of the ground floor and
then floors of the facade.

• w′

i andwi, for 1 ≤ i ≤ k, the width of the wall patches
and the width of the windows.

The procedure of optimization of these variables based on
image measurements is described in section 3.

3. Grammar MRF

As discussed in the previous section, a facade can be ex-
pressed using a generic shape grammar. A specific choice
of the parameters of these generic rules leads to a specific
facade. A facade can be represented as a sequence of three
rules, an extrusion, a vertical split and an horizontal split.



Figure 3. The MRF structure for optimization. Using a grammar
enables us to decouple the optimization of the horizontal split with
the optimization of the vertical one. Thus the grammar represents
a huge dimensionality gain.

Modeling the facade with a grammar has three main ad-
vantages for automatic reconstruction: structure, flexibil-
ity and dimensionality reduction. The first one is the ca-
pability to intrinsically handle repetitions and well-defined
structures. Therefore the result of optimizing the grammar
parameters with respect to the image, will always produce a
well-defined building. As for flexibility, shape grammar al-
lows to handle irregular facade rhythms in both directions.
Unlike [12], we are not limited to search for regular repe-
titions of a unique pattern. Finally, according to the gram-
mar, some rules are completely independent from one an-
other. This is the case of the two splits. Consequently, these
rules should be optimized independently. The grammar re-
duces tremendously the complexity of our problem by in-
trinsically decoupling the optimization.

3.1. MRF Formulation

A graphical model such as Markov Random Field turns
out to be an appropriate way of formulating our problem.
Each rule can be seen as a simple MRF in which the nodes
are the basic shapes lying on the right-hand side of the rule
definition. The MRFs of two dependent rules are linked
together. Fig. 3 shows the structure of the final MRF. The
exact geometry of an element is unknown. The edges of the
graph represent grammatical constraints that directly come
from the operators. Sections 3.2, 3.3, 3.4 explain in detail
how to build these MRFs.

Each nodeq is a basic shape of the grammar with a de-
fined semantics and an undefined geometry. Therefore, the
labelxq of nodeq represents the scope of the atomic shape
in the relevant direction of the operator. For instance, a ver-
tical split will only take care of the vertical position and the
vertical dimension of the scopes. Those labels are chosen
among a label setLi = (l1, . . . , lk). To each nodeq we
associate a cost for each labelDq(xq) or singleton poten-
tial. To each pair of nodesq andr linked by an edge and for
every possible pair of labelsxq andxr we associate a cost
Vqr(xq , xr) or pairwise potential, that measures the appro-
priateness of a joint configuration. Consequently, for each
labelingl = (x1, . . . , xn) of then nodes of the graph, we
can associate the cost :

E(l) =
∑

q

Dq(xq) +
∑

qr

Vqr(xq, xr) (3)

Figure 4. Definition of the labels : height and position of thefloor.

Minimizing this energy with respect tol provides the la-
beling l∗ that represents the optimal choice for the param-
eters of the rules to be applied on the axiom, in order to
generate the building seen in the image.

l
∗ = arg min

l
E(l) (4)

The next sections explains how to build the MRF for
each rule. Before entering into the details, one might won-
der why not to use the derivation tree defined by the gram-
mar as a MRF (such as in Fig. 2). Actually such a graph
does not take advantage at all of the grammar’s assets. The
graph defines a fixed topology (even though the number of
floors may vary for instance) which is all but flexible. Be-
sides, such a graph faces the curse of dimensionality. The
number of possible scopes of the leaf nodes (the window for
instance) is as big as the number of instances of buildings
that can be generated by the generic grammar. While ap-
pealing the derivation tree is not a good candidate to define
the MRF.

3.2. Vertical Split Operator

Graph description: Each node at this level represents a
floor. Two adjacent nodes are linked by an edge, so that the
graph is reduced to a chain. The label of a floor is a pair
(p, h) that represents the position and the height of the floor
(see Fig. 4). We allow a floor to be of height zero, which
means that it does not exist. This way we can handle build-
ings with different numbers of floors with the same graph
topology. Each label(p, h) can be associated to a part of
the image by projecting the procedural model onto the im-
age using the rectification homography. (see Fig. 4).



Pair-wise potentials: They ensure the consistency be-
tween the operator and the image. The first term in equation
5 enforces a natural ordering constraint so that a floor sticks
to the bottom of the next one. The second term pushes non
existing floors at the end of the chain so as to avoid degen-
erated configurations. Eventually, the last one ensures both
visual and geometric similarities of consecutive floors.

Vq,r(la, lb) =










∞ pb − pa − ha 6= 0

∞ hb > 0, ha = 0

αS(la, lb) + β|hb − ha| ha > 0, hb > 0

(5)

ForS(la, lb) we use thesum of square differences(SSD)
between sub images as a simple similarity measure. If the
two compared floors share the same widthW , but are of
different heightsha andhb, then we only compute the SSD
on the overlapping parts, and normalize this measure by the
size of the overlap (see equation 6). The SSD is normal-
ized for comparison purpose between varying size of sub
images. The graph structure ensures a smooth and feasi-
ble configuration. It might be the case that two floors have
locally low SSD value, but the associated configuration is
very unlikely.

S(la, lb) = S((pa, ha), (pb, hb))

=

∑

i

∑

j (Ii,pa+j − Ii,pb+j)
2

W × min (ha, hb)

(6)

Singleton Potential: it tends to attract the boundaries of
the semantic elements to the boundaries of the image. It can
easily be modeled as a singleton potential as in equation (7).
B can be a non increasing function of||∇I|| or the result of
a pre-segmentation like the one in section 3.4.

Dq(l) = Dq((p, h)) = α

∑W

j=1
B(p, j)

W
(7)

Based on this model, we discretize the facade with a step
of 10cm, and we consider ranges of floor heights between
2.4m and4.2m. For a building with a height of18m (typical
in Paris), we have about3000 labels. Due to the floor con-
tingency, the chain is typically of length 8, since we cannot
expect more than height floors on these kinds of buildings.

3.3. Horizontal Split Operator

For horizontal split, we could use the exact same graph
as in section 3.2. However, we have decided to change it
towards being closer to the architectural design. We glob-
ally keep the same structure, but now a node represents a
vertical stripe containing a window, and therefore the space
between two nodes can be non zero. As a consequence,

the first case of equation 5 has to be relaxed by turning the
equality into an inequality.

As a gap might exist between two windows, we can es-
timate the appropriateness of it by adding an optional pair-
wise term. This term forces the gap regions (the walls) to
be homogeneous and symmetric (see equation 8)

Gq,r(la, lb) =

wa+pa+pb
2

∑

i

∑

j

|Ii,j − Ipb−i,j |
2 + var(R) (8)

whereI is the image,R the region between the two win-
dows andvar(R) its variance.

3.4. Building Extrusion

The height of the building has to be determined. The
image is not fully calibrated, therefore the solution will be
defined up to a scale factor.

In order to do that we use the result of the segmenta-
tion obtained by running the algorithm described in [6]. We
expect that in that image the different regions that are in-
teresting for us, i.e. sky, roof and main building, will con-
tain different labels. Due to noise, and the presence of dif-
ferent features (windows, balconies etc) we cannot expect
the regions to be homogeneous. We tackle this problem by
comparing the histograms of two consecutive rectangular
regions.

The metric we used was the Earth Mover’s Distance
(EMD for short) as described in [15]. We are searching for
anh∗ such that:

h∗ = arg max
h

EMD(H(R1), H(R2)) (9)

whereH is the histogram of the image region,R1 is the
region from the bottom to heighth andR2 is the region
from heighth to the top of the image. The same process is
repeated for the main building and roof separation since the
histogram of the roof is assumed to be different from the
histogram of the volume.

4. Experimental Validation

Once the MRF has been correctly defined, the inference
is solved using Belief Propagation [9], the fast message
passing algorithm which offers the great advantage of pro-
viding the global optimal solution when the graph has no
loops, as in our case. The optimal labeling is then easily
turned into a specific grammar, whose derivation produces
the expected 3D model (see Fig. 1).

We have tested our grammar-based segmentation and re-
construction approach on a set of building images, taken
from the street with a standard pocket camera. We present a
selection of the results obtained from this database. It gives
a good overview of the wide variety of buildings that can be



processed with a simple framework, without any machine
learning techniques. For each building we depict from left
to right and from top to bottom : the rectified input image,
the segmentation (walls are darken), then—in some cases—
a wire-frame and a textured 3D model obtained from the
grammar.

This selection focuses on demonstrating the robustness
of the approach with respect to illumination, occlusions,
viewpoint and architectural style. As for illumination, Fig. 7
presents two London buildings under different weather con-
ditions. The first image was taken on a cloudy day while the
sun is shinning on the second one. It spite of the weather
conditions and an important occlusion due to a scaffolding
in the first image, the segmentation is not affected. In Fig.
5, one can notice in the first facade an important local spec-
ular lighting effect which results on a saturation of the input
image. However the global optimization ensures the seg-
mentation to be correct.

Eventually, it goes without saying that the selected build-
ings belong to different architectural styles resulting inquite
diverse visual aspects. To be more accurate, Fig. 6 and Fig.
5 show different facades from Paris. The two buildings of
Fig. 6 as well as the two first ones of Fig. 5 were built in the
second half of the 19th century and belong to the Hauss-
mannian style. The two last buildings in Fig. 5 were built
around 150 years earlier and are typical examples of respec-
tively Louis XIV and Louis XII styles. Finally, the two last
buildings in Fig. 7 are taken from London and belong to
the Victorian style. One should also notice the different
rhythms of facade. For instance, in the second image of
Fig. 6, the windows are repeated regularly whereas the first
facade presents an irregular window grid.

5. Conclusion and future work

In this work, we have described a way to use shape gram-
mars along with Markov Random Field framework in order
to retrieve the semantics and the geometry of challenging
facades. The outcome of this process enables us to bridge
the gap between 2D segmentation and 3D reconstruction
from a single view.

The proposed method inherits three main limitations: in-
teractions between the grammar elements are constrained to
be on the pair level, the nature of the process is static and
simplistic features being used in the inference process that
are specific to the architecture. The first limitation can be
addressed with the use of higher order MRFs [8]. In order
to address the two remaining limitations we have adopted a
different theoretical framework. To this end, image features
are now obtained through responses of trained classifiers us-
ing machine learning techniques while instead of using an
MRF framework that requires static graph, we proposed a
random walk approach which optimizes both the sequence
of derivation rules and their corresponding parameters [18].

Figure 5. Segmentation of Parisian facades from different styles,
built between 1640 and 1860. Note the important specular effect
on the first facade and the irregular rhythm of the windows on the
second and the last one.



Besides, the use of more efficient optimization methods,
adapted to the dynamic nature of our problem like evolu-
tionary computational algorithms [3], or multi-armed ban-
dits [17] could greatly improve and enhance the applica-
bility of the method. Furthermore, inferring/customizing
specific grammars from images is a challenging direction.
The idea will be to automatically determine the set of basic
shapes and the set of rules being able to described a spe-
cific architecture using a set of training examples coming
from the same architectural class and a generic shape gram-
mar. Such a direction could enormously impact the applica-
bility of shape grammars for 3D modeling and reconstruc-
tion. Ultimately, we will look into large scale reconstruc-
tion of entire urban environments. Once one has such a
complete database of 3D models, many applications can be
envisioned such as scene generation and understanding, im-
age geo-tagging, or rich texture mapping on the fly, with
numerous applications fields, like cinematography, naviga-
tion, games, etc.
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