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Abstract

In this paper we address multi-view reconstruction of ur-
ban environments using 3D shape grammars. Our formula-
tion expresses the solution to the problem as a shape gram-
mar parse tree where both the tree and the corresponding
derivation parameters are unknown. Besides the grammar
constraint, the solution is guided by an image support that
is twofold. First, we seek for a derivation that induces op-
timal semantic partitions in the different views. Second, us-
ing structure-from-motion, noisy depth maps can be deter-
mined towards minimizing their distance from to the ones
predicted by any potential solution. We show how the un-
derlying data structure can be efficiently optimized using
evolutionary algorithms with automatic parameter selec-
tion. To the best of our knowledge, it is the first time that
the multi-view 3D procedural modeling problem is tackled.
Promising results demonstrate the potentials of the method
towards producing a compact representation of urban envi-
ronments.

1. Introduction

Urban environment modeling has been a burning issue in
the computer vision, remote sensing and geoscience com-
munities over the past few decades. While, the theory be-
hind stereo and structure-from-motion has became more
mature, new research perspectives have emerged. One can
think of the sensational impact of [| 1] and the many studies
that followed on browsing large collections of images. An-
other challenge that arose recently is related to the recon-
struction of large outdoor scenes. To treat efficiently such
a problem, there is need to exploit compact representations.
Towards this end, [4] have proposed an hybrid representa-
tion, combining predefined primitives (e.g. cylinders) and
classical meshes. However, existing approaches lack of se-
mantics while at the same time scalability might be an issue
in terms of representation, transmission, etc.

Shape grammars are not so recent, they were intro-

Figure 1. Based one 2D classification data (upper left) and auto-
matically computed 3D points cloud (second row), we retrieve the
structural information of the building (right and second row).

duced in a mathematical formalism by [12] as a generative
specification of shape classes in order to analyze paintings
and sculptures. During the two decades that followed, many
studies made use of this framework to decode the unifying
rules behind certain architectural styles [13].

This concept was emancipated in computer graphics, un-
der the name of procedural modeling [18, 7]. In this do-
main, they were used as random generators of realistic 3D
representations of buildings from a given architectural style.

Approximately in the same period, image parsing based
on shape grammars have drawn a great interest. For in-
stance, [8] and [3] focused on detecting repetitive structures
to produce a grammatical explanation of an input image.
Again in the computer vision domain, [1] and [16] tackled
image parsing as a classification problem where the gram-
mar can generate an extensive set (referred to as the proce-
dural space) of semantic image segmentations. Last, [15]
took up the same philosophy but endeavored to improve
the procedural space exploration relying on reinforcement
learning.

Despite the great interest of these methods, they fail to



provide the real 3D structure. Orthogonally, [17] used shape
grammars to retrieve complex mass models of modern ar-
chitectures. Ancient-heritage inverse procedural modeling
has been presented in [0]. In this paper, we focus on au-
tomatic multi-view procedural reconstruction of urban 3D
models embedding a mass model and faithful facade de-
tails. To the best of our knowledge, comparable approaches
rely on heavy user interaction [9].

Our approach differs from prior work using shape gram-
mars for building reconstruction in terms of output as well
as in terms of means to achieve it. It assumes as input a
sequence of N images Iy, ..., Ix along with their calibra-
tion matrices 71, . . ., . Similarly to existing approaches,
when N = 1 (a case mainly considered for comparison pur-
pose), only 2D parsing can be solved. Otherwise, we can re-
cover the 3D structure of the building. To this end, procedu-
ral techniques are developed to generate 2D/3D geometrico-
semantic layouts to be evaluated with respect to two crite-
ria', leading to a multi-objective optimization where seman-
tics and geometry are placed on an equal footing. The first
criterion, evaluates the likelihood of the visual properties of
the different architectural elements. The concurrent crite-
rion accounts for the consistency between noisy reference
depth-maps (derived through structure-from-motion) and
the ones predicted via the procedural model. The unknowns
are expressed as a grammar parse tree and are simultane-
ously recovered using evolutionary computation methods.

The remainder of the paper is organized as follows. In
Section 2, the grammar formalism is explained and illus-
trated on both facade and building procedural modeling.
Then, in Section 3, we present our search strategy based
on evolutionary algorithms. Section 4 describes the energy
functions used to implement the single-view and multi-view
criteria. Last, we validate our approach in Section 5, where
we show that it is competitive with the state-of-the-art for
the procedural facade segmentation, and present promising
quantitative/qualitative results for the newly introduced 3D
procedural reconstruction problem.

2. Procedural Building Modeling

The central idea developed here is that a shape grammar
might be thought as a formal specification of how to ran-
domly generate 2D/3D layouts (Figure 2) following some
design principles. We shall see that such layouts not only
bear a geometric description but also a semantic one, mak-
ing them compliant to image understanding techniques.

2.1. A Shape Grammar Paradigm

In this framework, we call shape a collection of prim-
itives s = {p1,...,px}. A primitive p is characterized
by a class ¢, (e.g. floor, window, balcony) and a geomet-

!Note that only one criterion can be evaluated if N = 1.
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Figure 2. Grammars as semantic layout generators: random lay-
outs obtained with a 2D grammar (a) and a 3D grammar (b).

ric description (a rectangle in 2D or a mesh in 3D). A rule
r : ¢, — rhs[z](.) describes how to replace a primitive
p by primitives produced by its right-hand-side procedure
r[x](p), parametrized by a real-valued vector x € R".
These parameters usually stand for geometric properties,
e.g. dimensions, orientations, efc.

Note that r can be applied to p only if ¢, matches c,. We
denote R, = {rs.t. ¢, = ¢,} the set of such rules. Based
on this, a primitive (or by extension its class c,,) will be said
terminal if R, is void and non-terminal otherwise.

Then, a shape grammar is defined by an axiom primitive,
a set of primitives ) called vocabulary and a set of rules R.
Let us now describe how a shape grammar can be turned
into a stochastic shape factory.

2.2. Derivation of a Shape Grammar

Algorithm 1 Shape grammar derivation process

s < {axiom}

while 3p € s s.t.R,, # 0 do
Pick r € R, randomly (r :
Sample x randomly
{plv s 7pk} = ThS[X](p)
s+ sUl_ pi\p

end while

cp — rhs]](\))

The process explained in algorithm 1 describes the ran-
dom shape generation. The initial shape is composed of the
axiom only. At each iteration, a non-terminal primitive p is
selected in the current shape. A rule r € R, is randomly
chosen along with the values of the necessary parameters
x. Then, p is replaced by the primitives emerging from the
application of r to p. The process stops as soon as the shape
is composed of terminal primitives only. This iterative re-
placement process can naturally be represented with a parse
tree (Figure 3) where internal nodes are non-terminals, and
leaves are either terminals or unprocessed non-terminals.
For each leave under processing, the chosen rule applica-
tion yields as many children as the produced primitives.
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Figure 3. Parse tree (a) associated with a partial derivation (b) of
the grammar in Table 1. Terminals correspond to colored nodes.

Implementing the derivation process provides a random
generator of shapes following the formal specification en-
coded in the grammar. The resulting shape depends directly
on the random choices made during the derivation. In the
perspective of optimizing them, we store the rule applied to
any node and its parameters x in the concerned node.

2.3. 2D Modeling of Facades

Following the ideas developed in [16], we can use this
procedural framework to decompose a frontal-facade image
into a set of labeled rectangles. The labels corresponds to
the classes of the primitives, and their geometry is always
rectangular. Here we provide a simple 2D grammar to help
the reader’s understanding of the procedural paradigm and
give concrete examples of procedures used in the rules.

The grammar rules are provided in Table 1 and few steps
of a derivation are shown in Figure 4. The only procedures
used here are the x /ySplit that carve a primitive into two
along the x/y direction (e.g. left image in Figure 4).

r Axiom — ySplit[hc] Fls;,RE
ro Flsi — ySplit[h] Wa,Flsao
rg3 Flso —  ySplit[h’] Fli,Fls:
ry4 Flg — xSplit[w] Wa,Fla
rs Flo —  xSplit[w’] Wi,Fl;

Table 1. A toy example of 2D grammar.

A more complex 2D grammar was actually designed to
express sophisticated facade layouts (see Figure 2 (a)). In
this version, additional procedures create dynamic links be-
tween the parameters of the rules at different scopes in the
derivation so as to enforce symmetries and alignments. This
kind of dynamic constraints generalizes the grammar factor-
ization concept proposed in [16] and turns out to be more
flexible towards 3D modeling of buildings.

2.4. 3D Modeling of Buildings

To generate 3D layouts as depicted in Figure 2 (b), we
follow the general scheme proposed by [7]: build a mass
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Figure 4. Few steps of a 2D grammar derivation.

model from a footprint, and then refine this coarse represen-
tation by further splitting each facade in both directions to
first grow the floors, then the windows, wall and balconies
and other terminal elements of the facade.

For conciseness, the rules of the grammar are not listed
here’. They rely mainly on 7 kinds of procedures: Move
and Scale change the position and scale of a primitives,
Extrude and Facetize switch between 2D and 3D
primitive, Insert plugs a new primitive in replacement of
another, Roof creates a mansard roof over a polygon and
x/ySplit.

Once the grammar has been defined, the next step con-
sists in searching among the possible designs the most suit-
able one to account for the images.

3. Efficient Exploration Strategy through Evo-
lutionary Algorithms

In this section, we introduce an elegant and appropriate
inference framework based on evolutionary algorithms. Re-
cent surveys of this field can be found in [5].

3.1. Evolutionary Algorithms

Evolutionary algorithms are part of meta-heuristics
which are stochastic search optimization methods. A funda-
mental notion in this strategy refers to elitism which favors
promising individuals. The underlying concept of these al-
gorithms is presented in Figure 5. Each iteration aims at
improving a generation P made of previously evaluated in-
dividuals. Evaluation of an individual consists in computing
its objective function value(s). Then promising individuals
P* are selected for mating (recombination) leading to O as
offspring. After a subsequent mutation step, the offspring
O is evaluated, and reinserted in the current population to-
wards replacing (partly) the previous generation.

3.2. Optimization of the Grammar Derivation

To apply the previous methodology to our particular
problem, we need to specify the kind of individuals we are
studying and the evolution processes applied to them.

2This grammar and the 2D one are detailed in supplementary material.
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Figure 5. Typical pipeline of evolutionary algorithms.

One usually discriminates between two representations.
On the one hand, the genotype is convenient to operate evo-
lutions. On the other hand, the phenotype is a “physical”
representation, more natural for fitness evaluation.

Genotype

A parse tree is made of nodes involving three components
n = (r,x, p). r and x are the variables to be optimized. The
last component, p, is the semantic primitive created dur-
ing the derivation and is entirely determined by the nodes
above n in the tree. For a given node, the rule can be cho-
sen among the finite set R, of rules applicable to p. On the
contrary, the parameters correspond to a real-valued vector.

A mutation acts on a single individual. After a node
n = (r, X, p) is chosen randomly, two options are available.

1. Rule mutations consist in replacing r by a random rule
of Ry, if #Rp, > 1.

2. Parameter mutations add a uniform perturbation « to a
randomly chosen element x; € x:

T; — x; +u, (D)

To recombine two individuals, we select two nodes n
and n’ (one per tree), such that ¢, = ¢,s. Then their contents
r,z and r’, x’ are swapped.

Note that mutations and recombinations can jeopardize
the validity of specific sub-trees. Any invalid sub-tree is
pruned and re-derived at random.

Phenotype and evaluation

A parse tree stores all the necessary information to derive
a semantic layout £ (Figure 2). This layout is the physical

expression of the individual: its phenotype. In the single-
view case, the individual relevance with respect to the ob-
servations will be evaluated thanks to an appearance energy
E,(L). In the multiple-view case, an individual will be also
evaluated thanks to a depth energy E4(L). The energy def-
initions will be detailed later.

Based on the fitness of any individual is known, an elitist
process called selection is designed to ensure the preserva-
tion of strong features. When only E, (L) is considered, in-
dividuals are selected by running 2-tournaments. Two can-
didates are randomly picked and the fittest is kept as a gen-
itor (i.e. appended to P*).

Otherwise, Etpa1(L) = (Eo(L), Ea(L)) € R? we can
compare individuals using Pareto partial ordering. For-
mally, we will note £; >, Lo, if £; has all energies smaller
than L-. Given this partial ordering, we seek to approximate
a set called the Pareto frontier. It consists of all individuals
that are dominated by none other solution (Figure 6).

Among different options, we have chosen the modified
Strength Pareto Evolutionary Algorithm (SPEA-II) selec-
tion scheme [19]. The process (Algorithm 2) performs both
the pareto front estimation and the selection of genitors.
Selection is performed by using a classical tournament on
the current estimate of the front. The front is approximated
by a fixed size archive A, which is initialized with all non-
dominated solutions found so far and it then pruned or com-
pleted at need. Note that diversity is promoted among gen-
itors by preferably pruning solutions located at dense posi-
tions in the current Pareto front estimate.

Algorithm 2 SPEA-II algorithm
Require: P: current population
Require: A: archive of non-dominated solutions
Require: a: maximum size of archive
A < non-dominated solutions of P U A
if #A < a then
extend A with (a — #A) fittest dominated solutions
from P
else
remove from A its (#A — a) individuals at dense lo-
cations
end if
P* < tournament selection on A
return P* A

3.3. Optimal solution in the multi-objective case

Successive iterations of the multi-objective algorithm
produce a set of candidates approximating the Pareto fron-
tier. In practice, we are looking for a unique optimal solu-
tion. Thus, we combine the two energies into a single one:

E(L) = aEa(L) + (1 — a) Ea(L) 2
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Figure 6. Illustrative example: Pareto frontier (red line) and its es-
timate (red triangles). Level sets of a linearized fitness £ (dashed
black). A local minimum of E (purple cross) far away from the
global one (orange cross).

The level sets of E correspond to dashed straight lines
in Figure 6. The optimal solution with respect to this en-
ergy is easily determined from the complete set of Pareto
solutions. Note that among the approximate Pareto solu-
tions, only those belonging to the Pareto convex hull might
be optimal for a linear combination of the objectives.

Better exploration behavior

One may think that we could have used a combined energy
from the beginning and rely on classical tournaments. This
assumption is strongly objected in the theory of evolution-
ary optimization where the consensus states that keeping
multiple objectives reduces the risk of early convergence to
a local minimum. Concerning our problem, the validity of
this statement has been observed experimentally (Figure 7).
A typical case of local minima is illustrated in Figure 6
where the Pareto set is concave.

Automatic weight selection

It is also important to note that the choice of « plays a
key role on the final outcome of the optimization process.
Defining such a value beforehand is not straightforward.
The knowledge of the Pareto set makes this task easier since
its bounding box brings valuable insights regarding the ap-
propriate balance between the two energy components. A
practical value of « corresponds to iso-lines of E that are
parallel to the diagonal of the Pareto set bounding box.

4. Concurrent Energy Models

In this section, we propose two energy models, one ex-
tending the appearance model proposed in [!5] to non-
frontal views of a 2D/3D layout and another evaluating the
quality of a 3D layout with respect to depth profiles.

5
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Figure 7. A population driven by SPEA-II in orange and one
driven by a combined energy in cyan. Red/blue dots correspond
the last generations and red line to the estimated Pareto set.

4.1. Appearance Energy

The first energy makes the link between the symbolic
world of grammars and the statistical visual properties of
the associated architectural elements. It can be used as soon
as a calibrated image of the building is available. Therefore,
it is adapted to facade segmentation and 3D reconstruction.

We adopt a Bayesian formulation where we aim at defin-
ing the posterior probability of the procedural layout L
knowing the set of views I: P(L|I). We first express the
posterior with the likelihood and the prior using the Bayes
rule: P(L|I) o« P(I|£)P(L). Given that the grammar al-
ready expresses a very strong prior on the semantic layout,
we do not consider additional ones. Then, assuming inde-
pendence between the different views and among the pixels
of each image, the likelihood is factorized as:

N N
pIL) = [ Pl) = [T [T PU@I0) )
k=1

k=1 =

In the factorization, we only have to express the pixel
likelihood P(Iy(z)|L£). We make the natural assumption
that the distribution of Ij(x) given the model £ only de-
pends on the voxel Tl';;l(I) which projects on the pixel x in
Ij.. Then P(Ij,(x)|L£) can be rewritten as P(Ij(z)|m, ' (z)).

In the single-view case, m; is a one-to-one mapping from
the image domain to the 2D layout. Otherwise the 7 ’s are
not necessarily bijective and the latter expression is only
valid when 7, ! (z) exists (i.e. when the line of sight passing
through z intersects £). In the opposite case, 7rk_1(ac) is
considered latent and P(Ij(x)|L) is averaged over the set
of admissible values for 7, ' (x).

P(I}(x)|m;, ' (z)) is estimated based on the semantics
predicted by £ at z i.e. as P(Iy(z)|c(my ' (2))). In our set-
tings, for any class ¢ the probability distribution P (I (x)|c)
is learned using a Gaussian Mixture Model on the RGB val-
ues of pixels in a training set. In practice, the training set is



created by a user who paints some brush strokes on one of
the input images for all the terminal classes of the grammar.

Last, the appearance energy I, is obtained by taking the
negative log-likelihood as:

Z Z log (P(I(z)|£)) )

It uses appearance as a way to distinguish between the
terminal semantic elements. However, it fails to account
for real 3D evidence with respect to the voxels belonging to
different or even to the same class when located at different
depths. This can be addressed through a depth energy.

4.2. Depth Energy

As an alternative, a depth energy is obtained by compar-
ing the model £ with the reference 3D point cloud Py.f.
For each visible facade, we extract two depth maps. One
is derived from the point cloud while the second corre-
sponds to L. Practically, each depth map is extracted from
the Z-buffer of a virtual orthographic camera facing the
facade. We end up with a list of pairs of depth maps
(D, D}s)s- - (D2, D)), where M is the number of
facades. Then the energy of L is:

ZZID’” = D) —d™|?, ()

where d™ is the mean distance between D7 and D) 7
Therefore, the energy is minimal when both depth maps
differ by a constant (not required to be null for better ro-
bustness to small inaccuracies in the calibration data).

5. Experimental Validation
5.1. Single-view Performance

The following tests were launched on the data-set pro-
posed by [16]. 10000 hypotheses were tested for each fa-
cade. Motivated by empirical observations, the population
and offspring sizes were set respectively to 32 and 16.

We computed the confusion matrix, where at row % and
column j is the percentage of pixels attached to class ¢ ac-
cording to the ground truth and to j with our approach.

[16]  [15] Cp

70 23 5 0 2 0 0\ -11 —11 window

2 91 6 0 O O 1|48 +7 wall

7 19 73 0 0 O 1 |[+1 410 balcony

O 1 0 76 0 0 22|45 -8 door

6 4 0 0 88 2 0 [|+8 +2 roof

1 0 0 0 3 96 0 [|+2 42 sky

o 2 0 4 0 0 93/-1 -4 shop

Comparisons with [16, 15] regarding detection rates (di-
agonal entries) are shown in blue/red. This experiment

shows that evolutionary algorithms provide equivalent per-
formance as both alternatives, with a competitive number of
hypotheses as in the state-of-the-art. This is very promising
for the 3D multi-view extension.

5.2. Multi-view Quantitative Validation
Settings

We use tens of images to run the automatic structure-and-
motion tool Bundler [10]. Then, a dense point cloud is gen-
erated using the PMVS tool [2]. For practical reasons, these
steps can be performed for multiple buildings at once. Af-
terward, to reduce the computational burden, we limit our-
selves to 2 views per visible facade.

The grammar axiom is derived from a footprint retrieved
from OpenStreetMap, using the address of the targeted
building. The footprint must be expressed in the same eu-
clidean coordinate system as the calibrated cameras. We
have met this requirement by providing few correspon-
dences between the cadastrial map and the structure-from-
motion point cloud. Note that this step could be automated
[14] and allows the output building models to be seamlessly
embedded in a complete GIS environment.

Our complete data set is made of 10 buildings. For a
given building, a ground-truth procedural layout £ can be
built manually. This task is time-consuming and was done
carefully for each building of our data set.

The evolutionary algorithm runs 200 generations pro-
ducing each at most 100 new individuals.

Performance criteria

Given that the model incorporates geometric and semantic
information, it is natural to evaluate the relevance of both
aspects. Regarding the semantic aspect, we keep the same
line with confusion matrices, although the ground-truth la-
beling is derived from L.

To assess geometric accuracy, we can compute the av-
erage point-to-surface distance between the inferred model
and the reference one.

d(L,Lg) = min d(x,zg). (6)

#£ mgteﬁgt

Results

We first consider the classification criterion presented in the
following confusion matrix. Globally, the numerical values
are equivalent to these obtained in the single-view experi-
ments. We do not provide a detailed comparison with the
previous experiments as the data sets differ.



70 24 5 0 1 O window
3 8 13 0 0 O wall

10 7 8 0 1 0 balcony
2 0 8 0 14| door

0
8 6 7T 0 79 0 roof
0 4 0 2 0 94/ shop

In Table 2, we show the statistics obtained with Equa-
tion 6 on a per-semantics basis. Overall, the deviation is
bounded by 30 centimeters. Large gaps between the ground
truth and the inferred model concern mainly the roof and the
shops. But in such cases, this difference has little impact on
the visual quality of the model since the corresponding ar-
chitectural elements are large. On the contrary, the error
for windows averages to 11 centimeters and is less satisfac-
tory given that the depth of a window amounts to approxi-
mately 50 centimeters. Nevertheless when considering the
final model, this is hardly noticeable.

c de(L, Lgt)
window 1lcm
wall 4cm
balcony 13cm
door lcm
roof 3lcm
shop 27cm

Table 2. Geometric accuracy.

We have allowed 20, 000 hypotheses which shows that
despite a greater complexity in the inference task, the num-
ber of candidates remains comparable to state-of-the-art fa-
cade parsing [15]. However, even though the algorithmic
complexity is harnessed, the necessary time to reconstruct
a single building remains significant mainly because of the
computation of the energy terms. The inference typically
requires around one hour.

5.3. Examples of Multi-view Reconstructions

We present here a few qualitative results on different
buildings from Paris. For each building, we show the clas-
sification induced by the 3D semantic layout and the tex-
tured 3D model in which structural elements are replaced
by highly detailed models. In particular, Figure 8 draws a
parallel between these results and the raw classification and
depth cues. The gain is obvious with respect to both as-
pects. Despite the complexity of the problem and the very
noisy level of appearance and depth information, the mod-
els are very accurate in terms of geometry and of topology.
Different results obtained on other examples are depicted in
Figure 9. Last, Figure 10 shows the reconstruction obtained
with a building presenting many street facades. This exam-
ple illustrates the benefit of handling the building as a whole
instead of dealing with each facade separately.

(a) raw classification

(b) Optimal 3D layout

(d) Optimal 3D model
Figure 8. Optimal procedural reconstruction compared to raw in-
puts. First row: raw classification and point cloud. Second row:
the optimal 3D layout and the derived 3D model obtained by
adding detailed 3D models and back-projecting a texture.

Although the results are very satisfying, few failure cases
must be deplored. They occur when the actual layout can-
not be generated by the grammar, as for instance balconies
running only partially along the facade (third floor in Fig-
ure 8 (b)). In such a case, the reconstruction is a consensus
between the language of the grammar and the observations.
Besides, the registration of the point cloud and the camera is
sometimes not as accurate as expected, and it can therefore
introduce some bias in the final model.

6. Conclusion

In this paper, we have introduced an innovative
grammar-based approach to multi-view 3D reconstruction.
Our method inherits the strength of grammar representa-
tions like the modularity with respect to the class of ar-
chitectures that could be derived, the compactness of the
representation and the semantic understanding of the en-
vironment. This is achieved through an aggregation of
segmentation and reconstruction objectives. The resulting
paradigm opposite to prior grammar-based segmentation
methods provide the real 3D geometry of the scene.

As a by-product, we have demonstrated the potentials of
evolutionary algorithms to infer optimal grammar deriva-
tion. Because of its flexibility, this paradigm is amenable to
many extensions. For instance, the estimation of the camera
parameters on the fly, as well as the footprint of the building
as part of the evolutionary algorithm could lead to a fully
automatic approach to 3D modeling. We are also consider-
ing the fusion of range data with aerial/street-level images



Figure 9. 3D reconstruction of different buildings.

as another extension. Eventually, looking at efficient means
of accelerating the convergence process through data-driven
mutations is a very promising direction.

References

[1] F. Alegre and F. Dellaert. A probabilistic approach to the
semantic interpretation of building facades. In International
Workshop on Vision Techniques Applied to the Rehabilitation
of City Centres, 2004. 1

(2]

(3]

(4]
(5]
(6]
(7]
(8]
(9]

(10]
(11]

[12]

[13]
(14]

[15]

[16]

(17]
(18]

(19]

Figure 10. 3D reconstruction of a building with multiple facades
visible from the street. Note that floors align seamlessly along the
different facades.

Y. Furukawa and J. Ponce. Patch-based multi-view stereo
software. http://grail.cs.washington.edu/software/pmvs/. 6
P. Koutsourakis, L. Simon, O. Teboul, G. Tziritas, and
N. Paragios. Single view reconstruction using shape gram-
mars for urban environments. In /ICCV, 2009. 1

F. Lafarge, R. Keriven, M. Brédif, and V. Hiep. Hybrid multi-
view reconstruction by jump-diffusion. In CVPR, 2010. 1

S. Luke. Essentials of Metaheuristics. Lulu, 2009. 3

M. Mathias, A. Martinovic, J. Weissenberg, and L. Gool.
Procedural 3d building reconstruction using shape grammars
and detectors. In 3DIMPVT, 2011. 2

P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool.
Procedural modeling of buildings. ACMTOG, 2006. 1, 3

P. Miiller, G. Zeng, P. Wonka, and L. Van Gool. Image-based
procedural modeling of facades. ACMTOG, 2007. 1

F. Niccolucci, M. Dellepiane, S. P. Serna, H. Rushmeierand,
and L. V. Gool. Reconstructing and exploring massive de-
tailed cityscapes. In VAST, 2011. 2

N. Snavely. Structure from motion for unordered image col-
lections. http://phototour.cs.washington.edu/bundler/. 6

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world
from internet photo collections. IJCV, 2007. 1

G. Stiny and J. Gips. Shape grammars and the generative
specification of painting and sculpture. Information process-
ing, 1972. 1

G. Stiny and W. Mitchell. The palladian grammar. Environ-
ment and Planning B, 1978. 1

C. Strecha and P. Fua. Dynamic and Scalable Large Scale
Image Reconstruction. In CVPR, 2010. 6

O. Teboul, I. Kokkinos, P. Koutsourakis, L. Simon, and
N. Paragios. Shape grammar parsing via reinforcement
learning. In CVPR, 2011. 1, 5,6,7

0. Teboul, L. Simon, P. Koutsourakis, and N. Paragios. Seg-
mentation of building facades using procedural shape priors.
In CVPR, 2010. 1, 3,6

C. Vanegas, D. Aliaga, and B. Benes. Building Reconstruc-
tion using Manhattan-World Grammars. In CVPR, 2010. 2
P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant
architecture. ACMTOG, 2003. 1

E. Zitzler, M. Laumanns, L. Thiele, and Others. SPEA2: Im-
proving the strength Pareto evolutionary algorithm. In Euro-
gen, 2001. 4



