
Revisiting Precision and Recall Definition for Generative Model Evaluation

Loı̈c Simon 1 Ryan Webster 1 Julien Rabin 1

Abstract

In this article we revisit the definition of Precision-
Recall (PR) curves for generative models pro-
posed by (Sajjadi et al., 2018). Rather than pro-
viding a scalar for generative quality, PR curves
distinguish mode-collapse (poor recall) and bad
quality (poor precision). We first generalize their
formulation to arbitrary measures, hence remov-
ing any restriction to finite support. We also ex-
pose a bridge between PR curves and type I and
type II error rates of likelihood ratio classifiers on
the task of discriminating between samples of the
two distributions. Building upon this new perspec-
tive, we propose a novel algorithm to approximate
precision-recall curves, that shares some interest-
ing methodological properties with the hypothe-
sis testing technique from (Lopez-Paz & Oquab,
2017). We demonstrate the interest of the pro-
posed formulation over the original approach on
controlled multi-modal datasets.

1. Introduction
This work addresses the question of the evaluation of
generative models, such as Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014) or Variational Auto-
Encoders (Kingma & Welling, 2014), that have attracted a
lot of attention in the last years. These approaches aim at
training a model to generate new samples from an unknown
target distribution P , for which one has only access to a
(sufficiently large) sample set Xi ∼ P . While this class of
methods have given state-of-the-art results in many appli-
cations (see e.g. (Brock et al., 2019) for image generation,
(Iizuka et al., 2017) for inpainting, etc), there is still a need
for evaluation techniques than can automatically assess and
compare the quality of generated samples Yi ∼ Q from
different models with the target distribution P , for which
the likelihood P (Yi) is unknown. Most of the time, such a
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Figure 1. Illustration of precision-recall curves for multi-modal
continuous distributions. Left: mode invention (precision is only
partial but full recall). Middle: mode dropping (partial recall) but
do not produce outliers (full precision but partial recall). Right:
mode dropping / invention plus mode reweighting.

comparison is just reduced to a simple visual inspection of
the samples Yi, but very recently several techniques have
been proposed to address this problem that boils down to
the comparison of two empirical distributions in high di-
mension. While generative models have seen successful
applications far beyond just image data (such as speech en-
hancement (Pascual et al., 2017), text to image synthesis
(Reed et al., 2016) or text translation (Lample et al., 2018)),
we will focus on image generation, as is popular in the
recent literature.

Previous Work When it comes to evaluating generative
models of images, visual inspection, that is observing how
“realistic” the images appear, remains the most important
decider of the model’s success. Indeed, state of the art meth-
ods, such a Progressive GANs (Karras et al., 2018) on face
images or BigGAN (Brock et al., 2019) trained condition-
ally on ImageNet classes, include large grids of generated
samples wherein the success of the method over previous
approaches is visually obvious. Nonetheless, automatic eval-
uation of such models is extremely important, for example
when conducting large scale empirical comparisons (Lucic
et al., 2018), in cases where model failure is more subtle
than simply poor image quality (e.g. mode collapse) such as
in (Sajjadi et al., 2018), or presumably in domains in which
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humans are less attuned to discern quality of samples.

Attempts to provide automatic assessment of image qual-
ity can be traced back to the first GAN methods (Radford
et al., 2015), where the authors assessed quality of gener-
ated samples with a nearest neighbor classifier. In (Salimans
et al., 2016), the so-called Inception Score was introduced,
which analyzes the entropy of image classes at the output
of the Inception Network (Szegedy et al., 2016), which re-
flects if samples cover all classes and each clearly belongs
to a particular class. In (Metz et al., 2017; Webster et al.,
2019) test set samples (i.e. those unseen during training),
are recovered via optimization. Successful generators are
better at recovering all images from the training distribution,
which in a controlled setting can be viewed as a notion of
recall (Lucic et al., 2018; Sajjadi et al., 2018). In (Heusel
et al., 2017), the Fréchet Inception Distance was introduced
(FID), which estimates the Fréchet distance between in-
ception features of real and generated samples modeled as
multivariate normal distributions. The FID has been widely
adopted because of its consistency with human inspection
and sensitivity to small changes in the real distribution (e.g.
slight blurring or small artifacts in generated images). A
few recent approaches involve training a binary classifier
to separate fake (i.e. generated) samples Yi from real data
samples Xi. In (Lopez-Paz & Oquab, 2017), a score is
defined from a two-sample statistical test of the hypothesis
P = Q. Finally, in (Im et al., 2018), classifiers trained
with various divergences (normally used as objectives for
discriminators during GAN training) are used to define a
metric between Q and P . Surprisingly, successful models
such as WGAN (Arjovsky et al., 2017a) have the smallest
distance even on those metrics which were not used for train-
ing (e.g. a WGAN trained with the Wasserstein-1 distance
evaluated with a least squares discriminator).

Unfortunately as pointed out by (Sajjadi et al., 2018), the
popular FID only provides a scalar value that cannot dis-
tinguish a model Q failing to cover all of P (referred to
henceforth as low recall) from a model Q which has poor
sample quality (referred to as low precision). For example,
when modeling a distribution of face images, aQ containing
only male faces with high quality versus aQ containing both
genders with blurry faces may have equal FID. Following
the lead of (Sajjadi et al., 2018), we will consider another
category where one wants not only to assess if the samples
are of good quality (high precision) but also to measure
if the generated distribution Q captures the variability of
the target one (high recall). The reader may refer to Fig-
ure 1 to gain a crude understanding of the intended purpose
of precision and recall. (Sajjadi et al., 2018) proposed an
elegant definition of precision and recall for discrete distri-
butions. They challenge their definition on image generation
by discretizing the probability distributions P and Q over
Inception features via K-means clustering. Note that a sim-

ilar notion was proposed by the authors of PACGAN (Lin
et al., 2018) under the name of mode collapse region (de-
noted as MCR(P,Q)). Their motivation was to develop a
theoretical tool to analyze how using multi-element samples
in the discriminator can mitigate mode dropping.

Contributions and outline The paper is organized as fol-
lows. First, Section 2 recalls usual notations and some
definitions from measure theory. Then, we expose the main
contributions of this paper:

• A first limit of (Sajjadi et al., 2018) is the restriction
to discrete probability distributions (i.e. considering
that samples live in a finite state space Ω). In Section 3,
this assumption is dispensed by defining Precision-
Recall curves from arbitrary probability distributions
for which some properties are then given;

• In the original work of (Sajjadi et al., 2018) the
Precision-Recall curves approach was opposed to
the hypothesis testing techniques from (Lopez-Paz &
Oquab, 2017); we demonstrate in Section 4 that pre-
cision and recall are actually linear combinations of
type I and type II errors of optimal likelihood ratio
classifiers, and give as well some upper-bound guaran-
tee for the estimation of Precision-Recall curves with
non-optimal classifiers; Besides, our formulation also
exhibits a relationship with the MCR notion proposed
by (Lin et al., 2018) which turns out to be the ROC
curves (1−type I versus type II errors) for optimal
classifiers;

• Section 5 details the proposed algorithm to estimate
Precision-Recall curves more accurately; the clustering
optimization step used in the original method is now
simply replaced by the training of a classifier which
learns to separate samples from the two datasets;

• The experimental Section 6 demonstrates the advan-
tage of the proposed formulation in a controlled set-
ting using labelled datasets (CIFAR10 and ImageNet
categories), and then shows its practical interest for
evaluating state-of-the art generative image models.

2. Notions from standard measure theory
We start these notes by recalling some standard notations,
definitions, and results of measure theory. For the remain-
der, (Ω,A) represents a common measurable space, and we
will denoteM(Ω) the set of signed measures,M+(Ω) the
set of positive measures andMp(Ω) the set of probability
distributions over that measurable space.

Definition 1. Let µ, ν two signed measures. We denote by

• supp(µ), the support of µ;
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• dµ
dν , the Radon-Nykodim derivative of µ w.r.t. ν;

• |µ|, the total variation measure of µ;

• µ ∧ ν = min(µ, ν) := 1
2 (µ + ν − |µ − ν|) (a.k.a

the measure of largest common mass between µ and ν
(Piccoli et al., 2017)).

The extended half real-line is denoted by R+ = R+ ∪ {∞}.
Theorem 1 (Hahn decomposition). Let µ ∈ M(Ω). Then
there exists an essentially unique partition Ω = Ω+

µ t Ω−µ
(i.e. where Ω+

µ ∩ Ω−µ = ∅) such that ∀A ∈ A:

A ⊂ Ω+
µ ⇒ µ(A) ≥ 0

A ⊂ Ω−µ ⇒ µ(A) ≤ 0
.

Corollary 1. Let µ, ν ∈M+(Ω). Then, ∀A ∈ A, we have:

(µ ∧ ν)(A) = µ(A ∩ Ω−µ−ν) + ν(A ∩ Ω+
µ−ν).

3. Precision-Recall set and curve
We follow (Sajjadi et al., 2018) for the definition of the
Precision-Recall (PR) set that we extent to any arbitrary pair
of probability distributions P and Q, up to two additional
minor changes. First, we have tried to adapt their definition
in a shorter form. Second, we include the left and lower
boundaries in the PR set.

Definition 2. Let P,Q two distributions fromMp(Ω). We
refer to the Precision-Recall set PRD(P,Q) as the set of
Precision-Recall pairs (α, β) ∈ R+ × R+ such that

∃µ ∈Mp(Ω), P ≥ βµ,Q ≥ αµ . (1)

The precision value α is related to the proportion of the
generated distribution Q that match the true data P , while
conversely the recall value β is the amount of the distri-
bution P that can be reconstructed from Q. Therefore, in
the context of generative models, one would like to have
admissible precision-recall pairs that are as close to (1, 1) as
possible. One can then easily show the following properties:

Theorem 2. Let P,Q two distributions fromMp(Ω). Then,

1. (0, 0) ∈ PRD(P,Q) ⊂ [0, 1]× [0, 1];

2. P = Q⇔ (1, 1) ∈ PRD(P,Q);

3. (α, β) ∈ PRD(P,Q) and α′ ≤ α, β′ ≤ β implies that
(α′, β′) ∈ PRD(P,Q).

Because of the lack of natural order on [0, 1] × [0, 1], no
point of PRD(P,Q) is strictly better than all the others. Yet,
the singular importance of (1, 1) should draw our attention
to the Pareto front of PRD(P,Q) defined as follows.

Definition 3. The precision recall-curve ∂PRD(P,Q) is
the set of (α, β) ∈ PRD(P,Q) such that

∀(α′, β′) ∈ PRD(P,Q), α ≥ α′ or β ≥ β′.

In fact, this frontier is a curve for which (Sajjadi et al., 2018)
have exposed a parameterization. We generalize their result
here (dropping any restriction to discrete probabilities).

Theorem 3. Let P,Q two distributions fromMp(Ω) and
(α, β) positive. Then, denoting1

∀λ ∈ R+,

{
αλ := ((λP ) ∧Q) (Ω)

βλ :=
(
P ∧ 1

λQ
)

(Ω)
(2)

1. (α, β) ∈ PRD(P,Q) iff α ≤ αλ and β ≤ βλ where
λ := α

β ∈ R+.

2. As a result, the PR curve can be parameterized as:

∂PRD(P,Q) = {(αλ, βλ)/λ ∈ R+} . (3)

Proof. The second point derives easily from the first which
we demonstrate now. Let (α, β) positive and λ := α

β . By
definition (α, β) ∈ PRD(P,Q) iff ∃ µ ∈Mp(Ω)

P ≥ βµ =
α

λ
µ and Q ≥ αµ

iff
µ ≤ 1

α
(λP ∧Q)(Ω) =

1

β
(P ∧ Q

λ
)

which yields the expected criteria given that µ(Ω) = 1.

4. Link with binary classification
Let us consider samples (Xi, Yi) ∼ P × Q and as many
Bernoulli variables Ui ∼ B 1

2
. And let Zi = UiXi + (1 −

Ui)Yi. Then Zi ∼ PZ follows a mixture of P and Q,
namely PZ = 1

2 (P + Q). Then, let us consider the bi-
nary classification task where from Zi, one should decide
whether Ui = 1 (often referred to as the null hypothesis).
We show that the precision-recall curve can be reinterpreted
as mixed error rates of binary classifiers obtained as likeli-
hood ratio tests (hence the most powerful classifiers accord-
ing to the celebrated Neyman-Pearson lemma).

Theorem 4. Let λ ≥ 0. Let Z = UX + (1− U)Y where
(X,Y, U) ∼ P × Q × B 1

2
. Defining the likelihood ratio

classifier Ũ as the following indicator function

Ũ(Z) := 1λ dP
dPZ

(Z)≥ dQ
dPZ

(Z) , (4)

then, αλ = λP(Ũ = 0|U = 1) + P(Ũ = 1|U = 0) .

1As is conventionally surmised in measure theory 0×∞ = 0
so that α∞ = Q(supp(P )) and β0 = P (supp(Q)).
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Proof. Note that we can reformulate Ũ as
Ũ(Z) = 1Ω+

λP−Q
(Z). Then,

P(Ũ = 1|U = 0) =

∫
Ω

1Ω+
λP−Q

(z)dPZ(z|U = 0)

=

∫
Ω

1Ω+
λP−Q

(z)dQ(z) = Q(Ω+
λP−Q)

.

Now, using 1Ũ=0 = 1Ω−λP−Q
, we have similarly P(Ũ =

0|U = 1) = P (Ω−λP−Q). Combining the two errors, we get

λP(Ũ = 0|U = 1)+P(Ũ = 1|U = 0) = (λP∧Q)(Ω) = αλ

where we have used Corollary 1.

The previous protocol demonstrates that points on the PR
curve are actually a linear combination of type I error
rate (probability of rejection of the true null hypothesis
P(Ũ = 0|U = 1)) with type II error rate (P(Ũ = 1|U = 0)).
It also shows that if one is able to compute the likelihood
ratio classifier, then one could virtually obtain the precision-
recall curve ∂PRD(P,Q). Unfortunately, in practice the
likelihoods are unknown. To alleviate this set-back, one
can argue like (Menon & Ong, 2016) that optimizing stan-
dard classification losses is in fine equivalent to minimize
a Bregman divergence to the likelihood ratio. Besides, we
are going to show that using Eq. (4) with any other classi-
fier always yields an over-estimation of αλ and βλ. To do
so, we will need the following lemma, which is merely a
quantitative version of the Neyman-Pearson Lemma.

Lemma 1. Let Ũ(Z) the likelihood ratio classifier defined
in Eq. (4), associated with the ratio λ. Then, any classifier
U ′(Z) with a lower type II error, that is such that

P(U ′ = 1|U = 0) ≤ P (Ũ = 1|U = 0) ,

undergoes an increase of the type I error such that{
α′λ := λP (U ′ = 0|U = 1) + P (U ′ = 1|U = 0) ≥ αλ
β′λ := P (U ′ = 0|U = 1) + 1

λP (U ′ = 1|U = 0) ≥ βλ

Proof. The proof is similar to the classical proof of the
Neyman-Pearson lemma (see Appendix A).

Theorem 5. Let Ũ the likelihood ratio classifier from
Eq. (4) associated with the ratio λ, and let U ′ be any other
classifier. Using precision-recall pair (α′λ, β

′
λ) defined in

Lemma 1, we have that

α′λ ≥ αλ and β′λ ≥ βλ

Proof. The proof uses Lemma 1 and its symmetric version
(obtained by swapping the role of type-I and type-II errors).
Three cases may arise:

1. If P(U ′ = 0|U = 1) ≥ P(Ũ = 0|U = 1) and
P(U ′ = 1|U = 0) ≥ P(Ũ = 1|U − 0) then the
conclusion of the theorem is trivially true;

2. If P(U ′ = 1|U = 0) ≤ P(Ũ = 1|U = 0), then the
conclusion is ensured by Lemma 1;

3. If P(U ′ = 0|U = 1) ≤ P(Ũ = 0|U = 1), then one
should use the symmetric version of Lemma 1.

5. Algorithm
Based on the above analysis, we propose the Algorithm 1
to estimate (via the function estimatePRCurve) the
Precision-Recall curve of two probability distributions
known through their respective sample sets.

Binary Classification We know from Theorem 4 that the
Precision-Recall curve can be exactly inferred from the like-
lihood ratio classifier denoted as Ũ . However, as explained
earlier, since both the generated and target distributions (Q
and P respectively) are unknown, one could not compute
in practice this optimal classifier. Instead, we propose to
train a binary classifier U ′. Recall that from Theorem 5
the estimated PR curve, being computed with a sub-optimal
classifier, lies therefore above the optimal one. We only
assume in the following that the classifier –denoted to as
f in the algorithm description– which is returned by the
function learnClassifier after the training, ranges in
a continuous interval (e.g. [0, 1]), so that the binary classifier
U ′ is actually obtained by thresholding: U ′(Z) = 1f(Z)≥t.

As a result, since the classifier needs some training data, the
N sample pairs D = {(Xi, Yi), 1 ≤ i ≤ N,Xi ∼ P, Yi ∼
Q} in the input dataset are first split into two sets Dtrain and
Dtest (function createTrainTest). For each image pair
(Xi, Yi), a Bernoulli random variable Ui with probability 1

2
is drawn to decide whether a true sample Xi (when Ui = 1)
or a fake one Yi (when Ui = 0) is used for the training set
Dtrain. The other sample is then collected in the test set Dtest

to compute the PR curve.

Precision and Recall estimation Recall from Theorem 3
that the PR curve ∂PRD = {(αλ, βλ), λ ∈ R+} is
parametrized by the ratio λ = α

β between precision α and
recall β. We denote by ∂PRDΛ the approximated PR curve
when this parameter takes values in the set Λ.

Given a test datasetDtest, the function estimatePRD com-
putes the PR values (αλ, βλ) from the false positive rate fpr
and the false negative rate fnr of the trained classifier f :

• fpr corresponds to the empirical type I error rate, that is
here (arbitrarily) the proportion of real samples z = Xi
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Inputs: Dataset of target/source sample pairs: D =
{(Xi, Yi) ∼ P ×Q i.i.d/i ∈ {1, . . . , N}},
Parameterization of the PR curve:
Λ = {λ1, . . . , λL}

Output: ∂PRDΛ ' {(αλ, βλ)/λ ∈ Λ}
Algorithm estimatePRCurve(D, Λ)

1 Dtrain,Dtest =createTrainTest(D)
2 f =learnClassifier(Dtrain)
3 ∂PRDΛ =estimatePRD(f , Dtest, Λ)
4 return ∂PRDΛ

Procedure createTrainTest(D)
1 Dtrain = ∅, Dtest = ∅
2 for i ∈ {1, . . . , N} do
3 Ui ∼ B 1

2

4 Ztraini = UiXi + (1− Ui)Yi
5 Ztesti = (1− Ui)Xi + UiYi
6 Dtrain ← Dtrain ∪ {(Ztraini , Ui)}
7 Dtest ← Dtest ∪ {(Ztesti , 1− Ui)}

end
8 return Dtrain,Dtest

Procedure estimatePRD(f , Dtest, Λ)
1 fV als = {f(z)/(z, u) ∈ Dtest}
2 errRates = ∅
3 Nj = |{(z, u) ∈ Dtest/u = j}|, for j ∈ {0, 1}
4 for t ∈ fV als do
5 fpr = 1

N1

∣∣{(z, u) ∈ Dtest/f(z) < t, u = 1}
∣∣

6 fnr = 1
N0

∣∣{(z, u) ∈ Dtest/f(z) ≥ t, u = 0}
∣∣

7 errRates← errRates ∪ {(fpr, fnr)}
end

8 ∂PRDΛ = ∅
9 for λ ∈ Λ do

10 αλ = min({λfpr + fnr/(fpr, fnr) ∈
errRates})

11 ∂PRDΛ ← ∂PRDΛ ∪ {(αλ, αλλ )}
end

12 return ∂PRDΛ

Algorithm 1: Classification-based estimation of the
Precision-Recall curve.

(for which u = 1) that are misclassified as generated
samples (i.e. when f(z) < t);

• conversely, fnr is the empirical type II error rate, that
is the proportion of generated samples z = Yi (for
which u = 0) that are misclassified as real samples (i.e.
f(z) ≥ t);

Now, this raises the question of setting the threshold t that
defines the binary classifier U ′(z) = 1f(z)>t. Since Theo-
rem 5 states that the computed precision and recall values

(αλ, βλ) are actually upper-bound estimates, we use the
minimum of these estimates when spanning the threshold
value in the range of f . Note that it is sufficient to consider
the finite set fV als of classification scores over Dtest.

Comparison with ROC curves Using a ROC curve (for
Receiver Operating Characteristic) to evaluate a binary clas-
sifier is very common in machine learning. Let us recall
that it is the curve of the true positive rate (1− fnr) against
the false positive rate (fpr) obtained for different classifi-
cation thresholds. Considering again the likelihood ratio
test classifiers for all possible ratios would then provide the
Pareto optimal ROC curve and could be used to assess if P
and Q are similar or not. It turns out that the the frontier of
the Mode Collapse Region proposed by (Lin et al., 2018)
provides exactly this optimal ROC curve. For the recall, this
notion is originally defined as follows:

MCR(P,Q) = {(ε, δ)/0 ≤ ε < δ ≤ 1,

∃A ∈ A, P (A) ≥ δ,Q(A) ≤ ε}

From this definition, one can see that the MCR exhibits
mode dropping by analyzing if part of the mass of P is
absent from Q. The notion differs from PRD at least in two
ways. First MCR is not symmetric in P and Q. Then it uses
the mass of a subset A instead of an auxiliary measure µ to
characterize the shared / unshared mass between P and Q.
Despite those differences, the two notions serve a similar
purpose. Given their respective interpretation as optimal
type I vs type II errors, they mostly differ in terms of visual
characterization of mode dropping.

6. Experiments
In this section we demonstrate that Algorithm 1 is consis-
tent with the expected notion of precision and recall on
controlled datasets such as CIFAR-10 and Imagenet. The
results even compare favorably to (Sajjadi et al., 2018) for
such datasets. The situation is more complex when one dis-
tribution is made of generated samples, because the expected
gold-standard precision-recall curve cannot be predicted in
a trivial way.

In all our experiments, we compute the precision-recall
curve between the distribution of features of the Inception
Network (Szegedy et al., 2016) (or some other network
when specified) instead of using raw images (this choice
will be discussed later on). In simple words, it means that
we first extract inception features before training / evaluat-
ing the classifier. The classifier itself is an ensemble of 10
linear classifiers. The consensus between the linear classi-
fiers is computed by evaluating the median of their predic-
tions. Besides, each linear classifier is trained independently
with the ADAM algorithm. We progressively decrease the
learning rate starting from 10−3 for 50 epochs and use a



Revisiting Precision-Recall For Generative Models

Figure 2. Precision-recall curves for P made of the five first classes
of CIFAR-10 versus Q made of q ∈ {1, . . . , 9} first classes. Left
estimate from (Sajjadi et al., 2018) and right our implementation.

fixed weight decay of 0.1. Any sophisticated classification
method could be used to achieve our goal (deeper neural
network, non-linear SVM, etc), but this simplistic ensemble
network turned out to be sufficient in practice. Observe
that this training procedure is replacing the pre-processing
(K-means clustering) in the original approach of (Sajjadi
et al., 2018), which relies also on inception features so that
both methods share a similar time complexity.

Figure 2 reproduces an experiment proposed by (Sajjadi
et al., 2018). It presents the estimated precision-recall curves
on distributions made from CIFAR-10 samples. The ref-
erence distribution P is always the same and it gathers
samples from the first 5 classes. On the other hand, Q is
composed of the first q classes. When q ≤ 5 we should
expect a rectangular curve with a maximum precision of
1 and maximum recall of q/5 (as illustrated in middle of
Fig. 1). Similarly, when q > 5 the expected curve is also
rectangular one, but this time the maximum precision is 5/q
and the maximum recall is 1 (Fig. 1, left). These expected
theoretical curves are shown in dash. The original imple-
mentation from (Sajjadi et al., 2018) is shown on the left
and ours on the right. It is clear that both methods capture
the intended behaviour of precision and recall. Besides,
two subtle differences can be observed. First, as implied by
Theorem 5 our implementation is always overestimating the
theoretical curve (up to the variance due to finite samples).
On the contrary, the clustering approach does not provide
similar guarantee (as observed experimentally). Second,
our implementation is slightly more accurate around the
horizontal and vertical transitions.

One particular difficulty with the clustering approach lies in
choosing the number of clusters. While the original choice
of 20 is reasonable for simple distributions, it can fail to
capture the complexity of strongly multi-modal distribu-
tions. To highlight this phenomenon, we present in Figure 3
another controlled experiment with Imagenet samples. In
this case, P and Q are both composed of samples from 80
classes, with a fixed ratio ρ of common classes. In this

Figure 3. PR curves for P and Q made of 80 classes from Ima-
geNet. The ratio of common classes varies from 0 to 100%. Left:
from (Sajjadi et al., 2018). Right: our implementation.

case, the expected curves can be predicted (see dash curves).
They correspond to rectangular curves with both maximal
precision and recall equal to ρ. As can be seen on the exper-
imental curves, the clustering approach is prone to mixing
the two datasets in the same clusters. It therefore produces
histograms that share a much heavier mass than the non
discretized distributions, resulting in PR curves that depart
strongly from the expected ones. Of course, such a draw-
back could be partially fixed by adapting the number of
clusters. However even then the clustering approach may
fail, as is demonstrated in Figure 4. In this experimient, the
distribution P is obtained approximately 60% female faces
and 40% male faces from the CelebA dataset, while Q is
composed of female only. The theoretical curve is a sharp
transition arising at recall 0.6. This is well captured by our
estimate (right curve) while varying the number of clusters
always leads to an oversmooth estimate, with either under
estimated precision or over-estimated recall.

Experiments on Generated Images Figure 5 illustrates
the proposed approach to three GANs trained on the Celeba-
HQ (Karras et al., 2018) dataset. We highlight the two
recent approaches of progressive GANs in (Karras et al.,
2018) and the 0 centered gradient penalty ResNets found
in (Mescheder et al., 2018) as they produce realistic images.
For comparison, we also include DCGAN (Radford et al.,
2015). For analysis with Algorithm 1, we choose the first
N = 1000 images of Celeba-HQ, and generate as many
images with each GAN. For training the classifiers, we split
each set (real and fake images) into 900 training images and
100 test images. In light of the previous experiments, we
choose to train our architecture on top of vision relevant
features. Because we are dealing with faces, we choose
the convolutional part of the VGG-Face network (Parkhi
et al., 2015). One advantage on using VGG-Face is that
artifacts present in generated images, such as unrealistic
backgrounds, are mitigated by the VGG-face network, so
that classification can focus on the realism of facial features.
Of course, small artifacts can be present in even high quality
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Figure 4. PR curves when P is composed of faces from CelebA
(60% females) and Q is composed of females only.

generators and a perfect classifier could ”cheat” by only
using seeing such artifacts. Fig. 5, shows the computed PR
curves for the three generators. Intuitively, networks with
high precision should generate realistic images consistently.
Progressive GANs achieve a maximum precision of 1.0,
and overall high precision, which is visually consistent. DC-
GAN is producing unrealistic images which is reflected by
it’s overall low precision. In some sense, recall reflects the
diversity of the generated images with respect to the dataset
and it is interesting to note all networks achieved higher
recall than precision. Finally, for the sake of comparison
with the FID (Heusel et al., 2017), the networks in Fig. 5
achieved FIDs of 25.23, 27.61 and 67.84 respectively from
left to right (lower is better).

Next, we analyze BigGAN (Brock et al., 2019) on Ima-
geNet for our classification approach and the clustering ap-
proach presented in (Sajjadi et al., 2018). Both approaches
use inception features as before. We take 80 images from
the first 40 classes of ImageNet, and then 20 images from
the first 40 classes for test images. We use 20 clusters for the
K-means approach and a single linear layer for the classifica-
tion approach. Fig. 6 highlights a large difference between
the approaches; the clustering approach overestimates the
similarities between the distributions and the classification
approach easily separates the two distributions. As was
demonstrated in Fig. 3, there are more classes than clusters,
which could explain why images from both distributions
may fall into the same clusters, in which (Sajjadi et al.,
2018) will fail to discern the two distributions. It is inter-
esting to note that the classifier easily separates the distribu-
tions despite the inception features being sparse for image
samples. One can observe a lack of intra-class diversity
in the BigGAN samples, which may be how the classifier
discerns the samples. We leave further investigation of this
discrepancy for future work.

Figure 5. Precision-recall curves and generated images for various
popular GANs on CelebA-HQ dataset (Karras et al., 2018). From
left to right: PGGAN (Karras et al., 2018), ResNet (Mescheder
et al., 2018), and DCGAN (Radford et al., 2015).

7. Discussion and future work
In this paper, we have revisited a recent definition of
precision-recall curve for comparing two distributions. Be-
sides extending precision and recall to arbitrary distributions,
we have exhibited a dual perspective on such notions. In
this new view, precision-recall curves are seen through the
prism of binary classification. Our central result states that
the Pareto optimal precision-recall pairs can be obtained as
linear combinations of type I and type II errors of likelihood
ratio classifiers. Last, we have provided a novel algorithm
to evaluate the precision-recall curves from random samples
drawn within the two involved distributions.

Discussion One achievement of our formulation is that
one can directly define the precision-recall curves of distri-
butions defined on continuous manifolds. In particular, our
definition could be applied directly in the image domain,
instead of first embedding the distribution in a feature space.
From the strict computation perspective, there should not
be any daunting obstacle in the way, as soon as we can
have access to enough data to train a good classifier. This is
usually the case for generative models, since the standard
datasets are quite massive.

However, it is not obvious whether classifiers trained on
raw-data provide useful notions of PR-curves. Indeed, given
the current state of affairs of generative modeling, we think
that the raw image curves may be less useful. Indeed, un-
til now, even the best generative models produce artifacts
(blurriness, structured noise, etc.). As such, the theoretical
distributions (real and generated) are mutually singular. So,
their theoretical precision-recall curve should be always triv-
ial (i.e. reduced to the origin). It is hence a necessary evil
to embed the distributions into a feature space as it allows a
classifier to focus its attention on statistical disparities that
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Figure 6. Evaluating generated samples on ImageNet. First row:
Samples from various categories of ImageNet (on the left), and
generated samples for the same categories from BigGAN (Brock
et al., 2019) (on the right). Second Row: PR curves computed with
the clustering approach of (Sajjadi et al., 2018) and ours.

are meaningful for the task at hand. For instance, when eval-
uating a face generator, it makes sense to use features that
are representative of facial attributes. Nonetheless, future
work should investigate a wider variety of pre-trained fea-
tures as well as classifiers trained on raw data to determine
which method is most suitable for computing PR curves.

Perspectives This work offers some interesting perspec-
tives that we would like to investigate in the future. First, as
opposed to the usual GAN training procedure where a scalar
divergence is used to assess the similarity between gener-
ated and target distributions, one could use the proposed
precision and recall definitions to control the quality of the
generator while preventing mode-collapse. For instance, the
discriminator could use the role of the classifier, as it has
been done in (Salimans et al., 2016).

Another interesting aspect is that like most existing diver-
gences comparing probability distributions, the proposed
approach is based on likelihood ratios that only compare
samples having the same values. More flexible ways do exist
to compare distributions, based for instance on optimal trans-
port, such as the Wasserstein distance (e.g 1-Wasserstein
GAN (Arjovsky et al., 2017b)) and could be adapted to keep
the notion of trade-off between quality and diversity.

A. Proof of Lemma 1
Let ε ≥ 0 such that P(U ′ = 1|U = 0) = P(Ũ = 1|U =
0)− ε. First, we decompose β′λ into 4 terms

β′λ =P(U ′ = 0|U = 1) + 1
λP(U ′ = 1|U = 0)

=P(U ′ = 0, Ũ = 0|U = 1) + P(U ′ = 0, Ũ = 1|U = 1)

+ 1
λP(U ′ = 1|U = 0)

=P(Ũ = 0|U = 1)− P(Ũ = 0, U ′ = 1|U = 1)

+ P(U ′ = 0, Ũ = 1|U = 1) + 1
λP(U ′ = 1|U = 0).

Considering separately each of the previous terms, we have

A = P(Ũ = 0|U = 1) ,

−B =P(U ′ = 1, Ũ = 0|U = 1) =

∫
1U ′=11Ũ=0dP

≤
∫
1U ′=11Ũ=0

1
λdQ = 1

λP(U ′ = 1, Ũ = 0|U − 0)

= 1
λ (P(U ′ = 1|U = 0)− P(U ′ = 1, Ũ = 1|U = 0))

= 1
λ

(
P(Ũ = 1|U = 0)− ε

1
λ − (P(Ũ = 1|U = 0)− P(U ′ = 0, Ũ = 1|U = 0))

)
= 1
λ (P(U ′ = 0, Ũ = 1|U = 0)− ε).

Finally

B ≥− 1
λ (P(U ′ = 0, Ũ = 1|U = 0)− ε).

Similarly

C =P(U ′ = 0, Ũ = 1|U = 1) =

∫
1U ′=01Ũ=1dP

≥
∫
1U ′=01Ũ=1

1
λdQ = 1

λP(U ′ = 0, Ũ = 1|U = 0) .

Using both inequalities for B and C, one gets

B + C ≥ ε

λ
.

Last,

D = 1
λP(U ′ = 1|U = 0) = 1

λ (P(Ũ = 1|U = 0)− ε).

Putting everything together, namely β′λ = A+B +C +D,
yields

β′λ ≥P(Ũ = 0|U = 1) + 1
λP(Ũ = 1|U = 0) = βλ.

Using (by a slight abuse of notation) αλ = λβλ and α′λ =
λβλ ≥ αλ concludes the proof.
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