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Influence of Unknown Exterior Samples on Interpolated Values for Band-limited
Images
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Abstract. The growing size of digital images and their increasing information content in terms of bits per
pixel (or SNR) leads to ask to which extent the known samples permit to restore the underlying
continuous image. In the context of band-limited data the Shannon-Whittaker theory gives an
adequate theoretical answer provided that infinitely many samples are measured. Yet, we show that
the current accuracy of digital images will be limited in the future by the truncation error, which is
no-more negligible with respect to other perturbations such as quantization or aliasing. To do so,
we propose a method to estimate the truncation error. All of our results are expressed in terms of
Root Mean Squared Error (RMSE) under the common hypothesis of band-limited weakly stationary
random processes. As a first contribution, we present a general expression of the truncation RMSE
involving the spectral content of the image. We then derive a simple and generic scheme to evaluate
bounds on the truncation error. The actual computation of error bounds is conducted for two
standard interpolation schemes, namely the Shannon-Whittaker and the DFT interpolators. These
theoretical bounds reveal a specific decay of the truncation error as a function of the distance
from the sample to the image boundary. The tight estimates obtained and validated on a set of
experiments confirm that the truncation error can become the main error term in HDR images. In
classic 8 bit images it is bound by the quantization error at a moderate distance from the image
boundary, but still requires large images to become manageable.
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1. Introduction. Even if digital image acquisition (capture, storage, transmission) is in
essence discrete, image processing remains deeply continuous. Continuous resampling oper-
ations constitute a key element of the vast majority of high-level processing tasks (such as
image registration, stitching, or stereo reconstruction). To succeed in the computation of an
image transformation, one must be able to reconstruct the underlying continuous image from
the available samples. In fact, it is never possible to truly recover the continuous data, since
errors of several kinds occur. Generally speaking one can refer to at least three major sources
of errors: photon counting, quantization and aliasing.

The first two relate to the way CCD captors operate individually, while the last one
depends on a relation between the step of the grid of captors and the highest frequencies in
the signal (after optical filtering). It is well known that the photon count is well approximated
by a Poisson distribution. As a consequence, after normalization in the image dynamic range
(for instance [0, 255] for a 8-bit camera) the standard deviation of the pixel value is of the
form

√
λX where X is the error-free response and λ is a factor depending on various capture

settings (e.g. the exposure time, the brightness of the scene). Quantization errors however
are independent of these settings: the error follows a uniform distribution on [−0.5, 0.5].
Therefore it may act as a standard reference. For comparison purposes, we provide the
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Figure 1.1. Estimation of the cumulative spectral power for a sound signal (a) and a textured image (b).

standard deviation of the quantization error:

√
E[(q(X)−X)2] =

1

2
√

3
' 0.29,

where X is the original signal and q(X) the quantized one.

Aliasing relates merely to the fact that an infinite number of signals (referred to as aliases)
correspond to the same collection of sample values. Such a definition is very general and simply
states that interpolation is doomed by an intrinsic ambiguity. In the common usage, the term
aliasing is dedicated to the more particular situation where an infinite number of samples are
available. Even in such circumstances, the ambiguity remains serious since, given a particular
reconstruction, one can build aliases by applying frequency shifts that are multiples of the
sampling frequency ωs := 2π/a (a being the step of the sampling grid). The ambiguity
is therefore totally harnessed if one restricts the possible signals to those with a spectrum
included in a predefined range of length ωs. Typically, one considers the class of Nyquist
band-limited signals, that is those which highest frequency modulus is ωNyq := ωs

2 .

These three classical sources of error are well studied [15] and one could claim that in
current good-quality cameras they are becoming rather negligible. Aliasing can be reduced
thanks to the combination of very small captors and optical anti-aliasing filters. Photon
counting errors can be lessened by increasing the exposure time or by high dynamic range
fusion techniques. Last, since the advent of 16-bit cameras, the quantization error is alleviated
relatively to the dynamic range (which passes from 256 to 216). Given these facts, it should
be virtually possible to obtain a perfect reconstruction using the Shannon-Whittaker recon-
struction (recalled later on). Nonetheless the real situation in which images are captured is
more complicated because only a finite number of samples are known. In this article, we will
focus specifically on this additional source of error commonly known as the truncation error.
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The truncation error has been thoroughly studied, ever since the sixties. However, the
published results are scarcely known by the image processing community. And while the
truncation error is often happily ignored, we shall see that it should not be overlooked given
the average size of current images. This statement is all the more valid for 16-bit images. In
order to motivate our study, let us consider quickly a few early works on the truncation error,
such as [18], [14], [26], [9] and [10]. These articles already provide instructive information
on the truncation error. Unfortunately, many of them employ deterministic models such as
bounded signals [26] or finite-energy signals [18, 14, 9]. Those are perfectly valid for images
but they lead to upper-bound expressions that cannot be evaluated from the known samples.
A better approach consists in relaxing the deterministic assumption and requiring that the
signal is statistically stationary [10]. This model is commonly accepted with respect to images
and presents the great advantage that global properties can be well estimated from a local
knowledge of the signal.

Along the same line, many articles ([13, 26, 11, 9, 19]) assume that the signal is not only
band-limited but is also oversampled so that its highest frequency is strictly less than the
Nyquist rate. By plotting the signal cumulative spectral power

∫
|ω|≤απ dΨ(ω) against band-

width απ, one can visually check the amount of oversampling. For example Figure 1.1 suggests
that the audio signal (left plot) is oversampled since the full intensity is reached around α =
2/3. Differently, the textured image (right plot) contains power up to the Nyquist bandwidth.
This behavior is typical of textures because they involve fast local variations similar to white-
noise (c.f. Figure 1.2). Published upper bounds that do not rely on oversampling [18, 10]
are few and they imply that the truncation error decreases more slowly with the size of the
signal than in the case of oversampled signals. In this study, we confirm this observation in a
theoretical context adapted to images. We also give experimental hindsight of the significance
of the truncation error for image processing applications.

Most of the published works consider the truncation error involved in interpolation meth-
ods that are not common practice (at least not in image processing). The typical case concerns
the truncated Shannon-Whittaker series or variants referred to as self-truncating series. In
practice, other interpolation methods for instance based on FFT are preferred. The most
classical one is certainly the DFT zero-padding. To the best of our knowledge, upper-bounds
concerning this interpolation method have only been studied in [25]. Their approach is very
similar to [26] and likewise their results are restricted to oversampled signals. In the supple-
mentary file, we present a complementary bibliographic study in order to place the truncation
error in a broader context (such as approximation theory [20, 16]) as well as to discuss more
recent works (e.g. [27, 19, 17, 4]) on the subject.

Even in recent works, truncation error is never considered for popular interpolators such
as B-splines. Several papers [1, 23] do provide a deep insight concerning the aliasing error. A
comprehensive summary of the corresponding results can be found in [22] where the problem
is presented in the context of approximating a continuous signal in the space V (h) generated
by the integer shifts of a predefined interpolation kernel h. One admirable finding (c.f. [22,
Theorem 2]) states that several projectors on V (h) can be obtained by combining a pre-filter
ha, an infinite sampling, a digital corrective filter p and the filter h. Usually, the pre-filter is
fixed by the device, so that only the digital filter p can be chosen freely. By doing so, one can
achieve the projection of the true continuous signal onto V (h) perpendicularly to V (ha).
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Figure 1.2. A textured patch of an image looks alike uncorrelated random variables (a.k.a white-noise).

In this paper, we admit that current cameras are set up to produce images that are
practically band-limited. In other words, the anti-aliasing prefilter ha is assumed to act as
an ideal low-pass filter. As a result, we consider the so-obtained band-limited signal as the
reference signal for all our error computations. In doing so we ignore the error that was
already introduced by the pre-filter. In that context, we would like to estimate the behavior
and the typical magnitude of the truncation error. More precisely, given a band-limited
signal Xt dependent on the continuous variable t, we consider the error between Xt and any
reconstruction X̃t obtained from the samples (Xk)|k|≤K . On the one hand, our context is
more limited than the one considered by Unser et al. because we concentrate on a specific
pre-filter that is sinc and because we only consider errors occurring after prefiltering. But on
the other hand, we are considering a more realistic situation where only finitely many samples
are acquired. In summary, the error that we wish to estimate can be expressed as follows1:

εt =

∣∣∣∣∣∣
∑
k∈Z

Xksinc(t− k)−
∑
|k|≤K

Xkh(t− k)

∣∣∣∣∣∣ .
As hinted above, our effort is led by two key specific aspects of image processing which are

1Beware that truncation error name could falsely convey the following non equivalent expression∣∣∣∑k∈ZXkh(t− k)−
∑
|k|≤K Xkh(t− k)

∣∣∣ where the filter h appears in the finite and the infinite expansion.
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the potential absence of oversampling and the seldom use of truncated Shannon-Whittaker
interpolation. Section 2 provides the necessary background to understand the problem at
stake. In particular, a few classical results on Random Processes are recalled in order to
introduce several generic tools that are useful in the rest of our derivations. The principal one is
a spectral-representation of the reconstruction error (see Theorem 2.12). Starting from section
3 until the end, we narrow our perspectives to band-limited processes and the associated
truncation error (cf Theorem 3.1). After giving a grasp of the expected behavior of the
truncation error, we provide an effective way to decompose a signal into spectral components
that shall be practical for accurately estimating the error (see Figure 3.1). Then, two technical
sections are dedicated to finding accurate upper-bounds for the truncation error with and
without over-sampling. On the one hand, Section 4 deals with the classical truncated Shannon-
Whittaker interpolation. And on the other hand, Section 5 tackles the more wide-spread
zero-padding interpolation. The most important results are recapped in Theorem 4.9 and
5.15. Given the high technicality of the upper-bound derivations, they were first obtained for
univariate Random Processes. Section 6 provides a generic way to transform such univariate
results into higher-dimensions. This operation allows us to verify that the truncation error
remains mostly influenced by the so-called white-noise component of the signal.

In addition to the previous theoretical contributions, we have also designed a generic ex-
perimental protocol. This protocol is presented in Section 7 along with selected examples that
demonstrate the accuracy of our bounds. Besides their validation character, the experiments
also give a down-to-earth feeling of the degree of errors due to truncation for real images.
For the sake of comparison, we provide empirical estimates of the truncation error for a naive
implementation of B-splines (that ignores the procedures recommended by [22]). This study
is of interest of course only when noise conditions and aliasing do not constitute the major
cause of error. In the opposite case, the use of local interpolators and of wavelets is fully
justified ([7, 8]), as a more global interpolation would only propagate errors.

2. General context of linear shift-invariant interpolation.

2.1. Useful notations. Throughout the paper, t ∈ Rd will refer to a generic location
in the domain of a multivariate signal, while k ∈ Zd will stand for an integer location in
the same domain. We will also use the standard notation ω ∈ Rd to represent angular
frequencies. The Fourier transform of a deterministic signal xt will be denoted by F(x) and
defined as x̂ω := F(x)(ω) :=

∫
e−iωtxtdt. With such conventions, the inverse Fourier transform

is expressed as

F−1(x̂)(t) :=
1

(2π)d

∫
eiωtx̂ωdω.

In both formulas, ωt denotes the scalar product of ω and t. We will also consider the discrete
Fourier transforms:

DFT (x)[l] :=
∑
|k|≤K

e−i
2πl
N
kx[k]

and

DFT −1(x̂)[k] :=
1

N

∑
|l|≤K

ei
2πl
N
kx̂[l],
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where K ∈ (Z+)d, N := (2K1 + 1) × · · · × (2Kd + 1) and to simplify the notations, we have
assumed that the signal was sampled symmetrically. This simplifying assumption will be kept
throughout the paper.

Many results in the paper will be presented in the multivariate case d > 1. In order to
keep the derivations simple it is useful to choose multivariate conventions that extend the
univariate notations in a lightweight manner. In particular, we have chosen the same notation
for the scalar product when d > 1 and classical product when d = 1. Similarly, we adopt
appropriate notations for comparison operators. If t, t′ ∈ Rd and T ∈ (R+)d then

• t ≤ t′ ⇔ t′ ≥ t ⇔ ∀i ∈ {1, . . . , d}, ti ≤ t′i
• |t| ≤ T ⇔ ∀i ∈ {1, . . . , d}, |ti| ≤ Ti
• |t| > T ⇔ ¬ (|t| ≤ T ) ⇔ ∃i ∈ {1, . . . , d}, |ti| > Ti
• in all other contexts, |t| := ‖t‖2 represents the Euclidean norm of t.

In this fashion, the notations concerning |t| are context dependent. In particular, to en-
sure that ≤ and > remain consistent some symmetry was broken in the quantifiers. These
conventions are kept unchanged for integer locations k and for angular frequencies ω.

In the univariate context d = 1, the previous notations are of course consistent with their
typical meaning. They are actually mere separable extensions of univariate notations. We
will use separable extensions in a more systematic way, when dealing with functions of multi-
variables. Let f : R → R, we will continue to denote f : Rd → R the function such that
f(t) =

∏d
i=1 f(ti). For example sin(t) :=

∏d
i=1 sin(ti).

In the same vein, given a law r acting on two multivariate variables t ∈ Rd and t′ ∈ Rd,
we will sometimes extend the definition of r to one multivariate and one univariate argument.
To do so, starting from variables u ∈ R and u′ ∈ R, we can create vectors of the right size by
replicating the univariate variables d times: tu := (u, . . . , u), t′u := (u′, . . . , u′). Then, we define
r(u, t′) := r(tu, t

′) and r(t, u′) := r(t, t′u). This convention shall be used for arithmetic laws
and comparison operators. For instance, the notation |ω| ≤ π means ∀i ∈ {1, . . . , d}, |ωi| ≤ π.

2.2. Classical results on Random Processes. As usual when dealing with missing data,
we will use stochastic models to account for the unknown values of an image. Therefore, in
what follows, Xt stands for a random process, where t ∈ Rd is either a time or space variable.
Our definitions follow [12].

Definition 2.1 (Random processes). Let Xt be a random process (RP). We refer to E[Xt]
and E[XτXτ+t] as respectively the first and second order statistics of Xt.

A random process Xt is said to be weakly stationary if its first and second order statistics
are shift invariant

E[Xt] =E[Xt′ ]

E[XτXτ+t] =E[Xτ ′Xτ ′+t].

We will generically denote by µ := E[Xt] its average and by RX(t) := E[(Xτ − µ)(Xτ+t − µ)]
its auto-correlation function (which is easily shown to be symmetric positive semi-definite).

Remark 2.1.Unless specified otherwise, all random processes will be assumed weakly sta-
tionary.

We now recall the definition of the notion of convergence that will be most useful.
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Definition 2.2 (Convergence in quadratic mean). Let X1, . . . , Xn, . . . a sequence of random
variables and X another random variable. We say that Xn → X in quadratic mean (or q.m.)
iff

E
[
|Xn −X|2

]
→ 0.

By extension, a sequence of RPs Xn
t converges to Xt at t iff

E
[
|Xn

t −Xt|2
]
→ 0.

Furthermore, a RP Xt is continuous in quadratic mean iff ∀t Xs → Xt in quadratic mean
when s→ t.

Proposition 2.3. Let Xt be a weakly stationary RP. Then the following assertions are equiv-
alent:

1. Xt is continuous in quadratic mean
2. RX is continuous at t = 0
3. RX is uniformly continuous on R

Proof. See supplementary file or [6] (p.143).

Definition 2.4 (Power spectral distribution).Let Xt be a weakly stationary RP continuous in
quadratic mean. We denote dΨX(ω) := F(RX)(ω) and refer to it as the power spectral
distribution (P.S.D) of Xt. Moreover,

• Xt is said to be Nyquist band-limited iff supp(dΨX) ⊂ {|ω| ≤ π} := Ωπ.
• If in addition, dΨX(∂Ωπ) = 0, then Xt is said strictly Nyquist band-limited.

Remark 2.2.Given the assumption in the previous definition, dΨX is necessarily well-
defined because the auto-covariance is a continuous (thanks to Proposition 2.3) and bounded
function. Besides, according to Bochner’s theorem it is a positive and finite Borel measure,
hence the notation dΨ.

2.3. Sampling and reconstruction. The action of extracting samples of a random process
is mathematically equivalent to the multiplication with a Dirac comb.

Definition 2.5 (Dirac Combs). Let 0 < K ≤ ∞. We will refer to the following distribution
as the Dirac comb of half-length K

∆K =
∑

k∈Zd,|k|≤K

δk.

Whenever it makes sense, we call the sampled version of a random process Xt the following
random distribution

X.∆K :=
∑
|k|≤K

Xkδk.

Remark 2.3. The sampled version is mathematically well defined for any random process
without any continuity assumption. Of course, some operations on the sampled version, such
as taking limits in the distribution sense, should not be permitted unless Xt is almost surely
continuous. This is the case for band-limited random processes which are almost surely analytic
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[3]. In this article, we do not rely on such operations, and the sampled version can be thought
as a convenient formal notation to encode the whole sequence of samples.

The action of recovering a continuous signal from its samples is known as a reconstruction.
Among all possible reconstruction schemes, the class of linear and shift invariant reconstruc-
tions is often favored for practical reasons.

Definition 2.6 (Reconstruction Systems). We call:

• reconstruction kernel, any function h : R 7→ R
• reconstruction system, any sequence (hK)K>0 of reconstruction kernels.

Besides, a reconstruction system

• is said interpolating iff

∀K > 0,∀|k| ≤ K,hK(k) =

{
1 if k = 0
0 otherwise

,

• reproduces constants iff

∀K > 0,∀|t| ≤ K,
∑
|k|≤K

hK(t− k) = 1.

Finally, we say that a reconstruction system (hK) satisfies the reconstruction systems domi-
nated condition if ∃h∞ such that

• ∀t,∀|ω| ≤ π, limK→∞
∑
|k|≤K e

iωkhK(t− k) =
∑

k e
iωkh∞(t− k) and

• ∀t,∃M(t) > 0 such that

∀K > 0,∀|ω| ≤ π,

∣∣∣∣∣∣
∑
|k|≤K

eiωkhK(t− k)

∣∣∣∣∣∣ ≤M(t).

Definition 2.7 (Linear shift-invariant reconstruction). Let Xt be a random process, (hK) a
reconstruction system and 0 < K < ∞. We define the reconstruction of Xt from its samples
Xk, k ∈ {−K, . . . ,K} by2

X̃
[hK ,K]
t := (X.∆K) ∗ hK(t) :=

∑
|k|≤K

XkhK(t− k).

Then, if the system verifies the reconstruction systems dominated condition, we can extend
the previous definition for K =∞

X̃
[h∞,∞]
t := (X.∆∞) ∗ h∞(t) = lim

K→∞
(X.∆K) ∗ hK(t) = lim

K→∞

∑
|k|≤K

XkhK(t− k),

where convergence holds in quadratic mean.

Remark 2.4.
• If hK is interpolating, then the reconstruction is flawless at sample positions |k| ≤ K.

2The notation (X.∆K) ∗ hK(t) is purely formal.



INFLUENCE OF TRUNCATION ERROR 9

• If hK reproduces constants, then the reconstruction is perfect for constant inputs (the
bias is null).

• In the previous definition, the limit case (K =∞) requires proving the convergence in
quadratic mean (see the supplementary file).

Definition 2.8 (RMSE).Let Xt be a random process and X̃t an arbitrary reconstruction. We
will evaluate the quality of this reconstruction in terms of RMSE:

RMSE[X̃](t)
2 := E[(Xt − X̃t)

2]

The ideal low-pass filter plays a central role in the theory of sampling and reconstruction.

Proposition 2.9. The Shannon-Whittaker reconstruction system (hK(t) = sinc(t) := sin(πt)
πt )

is interpolating and verifies the reconstruction systems dominated condition. Note that it
reproduces constants only asymptotically as K →∞.

Proof. See the supplementary file.

Definition 2.10 (Shannon-Whittaker interpolation).We will call ideal Shannon-Whittaker in-
terpolation of Xt,

X̃
[sinc,∞]
t := lim

K→∞

∑
|k|≤K

Xksinc(t− k)

in quadratic mean, that is to say

lim
K→∞

E

X̃ [sinc,∞]
t −

∑
|k|≤K

Xksinc(t− k)

2 = 0.

For the sake of completeness we provide the sampling theorem for random processes. A
proof can be found in [2], but we will obtain it as a by-product of our RMSE estimations.

Theorem 2.11 (Sampling theorem).Let Xt be a (not necessarily strictly) Nyquist band-limited
random process. Then, uniformly when t is bounded and in quadratic mean,

Xt = X̃
[sinc,∞]
t .

2.4. Generalized aliasing error. The reconstruction error can be considered under the
angle of a generalized aliasing. Given a certain number of samples, there are an infinite number
of continuous signals called aliases that agree with these measurements. Any interpolated
reconstruction is but a particular alias of the unknown continuous signal. It is useful to make
a clear distinction between two specific types of aliasing. On the one hand, what we shall
call the classical aliasing, corresponds to situations where an infinite number of samples are
known but the signal spectrum is not bounded into the Nyquist domain. On the other hand,
what we shall call truncation aliasing corresponds to Nyquist band-limited signals sampled
only at a finite number of locations.
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We now narrow our analysis to linear shift-invariant reconstruction. In such a case, we
will derive a general representation of the generalized aliasing RMSE. This representation will
be referred to as the “spectral representation” due to the central role of the spectral content
in its expression. The next theorem has an intuitive interpretation. It merely states that the
mean squared error is the sum of the squared errors with respect to the average value of X
and with respect to every pure harmonic eiωt (weighted by the spectrum of X).

Theorem 2.12 (Spectral representation of the generalized aliasing RMSE). Let Xt be a ran-
dom process of average µ and power spectrum dΨX , K <∞ and hK a reconstruction system
(hK is not required to be interpolating nor to preserve constants). Then the mean squared

error of the reconstruction X̃
[hK ,K]
t = (X.∆K) ∗ hK(t) is

RMSE[X.∆K∗hK ](t)
2 = |µ− µ∆K ∗ hK(t)|2 +

1

(2π)d

∫ ∣∣eiωt − [(eiω.∆K) ∗ hK ](t)
∣∣2 dΨX(ω)

(2.1)

The formula remains true if K = ∞ under the reconstruction systems dominated condition
(given in Definition 2.6).

Proof. See the supplementary file.
Definition 2.13 (Average and power spectral MSE). In what follows, we set

MSEµ(t)(hK) :=µ2 |1−∆K ∗ hK(t)|2 ,

MSEdΨ(t)(hK) :=
1

(2π)d

∫ ∣∣eiωt − (eiω.∆K

)
∗ hK(t)

∣∣2 dΨ(ω).

We will refer to them respectively as the average (or constant) MSE component and the power
spectral MSE component. They correspond to the squared bias and the variance.

We open a short parenthesis on the classical situation of aliasing with an infinite number
of samples, and we consider the ideal reconstruction biased towards recovering low-frequencies
(that is to say that among all the “aliases” that are consistent with the samples, we chose
the one whose spectrum is in the Nyquist band by using h = sinc). We obtain the following
result.

Corollary 2.14. Let Xt be a random process, then the mean squared error of the ideal
Shannon-Whittaker reconstruction is

RMSE[(X.∆∞)∗sinc](t)
2 =

1

(2π)d

∫
|ω|≥π

∣∣eiωt − [(eiω.∆∞) ∗ sinc](t)
∣∣2 dΨX(ω)

Proof. This is a direct consequence of Theorem 2.12 (we can use it for K = ∞ since
sinc verifies the reconstruction systems dominated condition) and the fact that the Shannon-
Whittaker reconstruction “asymptotically” preserves constants (i.e.

∑
k∈Zd sinc(t − k) ≡ 1)

which in turn implies that the average MSE is null.
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3. Case of band-limited processes.

3.1. Spatial truncation error. Note that the formula derived in the previous part for
the power spectral MSE component (Definition 2.13) is not prone to practical evaluations,
because the spectrum of the signal outside the Nyquist band cannot be estimated from a
digital signal. This is precisely due to the classical aliasing ambiguity itself. Several safeguards
can be adopted to rule out this ambiguity. Given the current trend of CCD cameras, we choose
to assume that the signal spectrum vanishes outside the Nyquist band. In other words, we
will assume that the process under consideration can be reconstructed perfectly with the ideal
Shannon-Whittaker formula: Xt = (X.∆∞) ∗ sinc.

Theorem 3.1 (Spectral representation of the truncation RMSE). Let Xt be a strictly Nyquist
band-limited random process of average µ, and (hK) a reconstruction system. Then

RMSE[X.∆K∗hK ](t)
2 = |µ∆∞ ∗ sinc(t)− µ∆K ∗ hK(t)|2

+
1

(2π)d

∫
|ω|≤π

∣∣(eiω.∆∞) ∗ sinc(t)−
(
eiω.∆K

)
∗ hK(t)

∣∣2 dΨX(ω).

Proof. This theorem is in fact a corollary of Theorem 2.12. Only we have emphasized that
µ = µ∆∞ ∗ sinc(t), and if |ω| < π eiωt = [(eiω.∆∞) ∗ sinc](t). The previous equality is not true
for |ω| = π hence the strict band-limited hypothesis.

3.2. Expected general behavior. The major obstacle encountered when dealing with in-
terpolation of Nyquist band-limited signals relates to the lack of knowledge about the samples
outside the signal domain (Xk for |k| > K). One simple approach is to use the Shannon-
Whittaker reconstruction, by extending our knowledge about the samples in an arbitrary
way. In this paper, we consider two such ways:

• the null extension, where the Xk’s are assumed null outside the domain: Xk = 0 if
|k| > K,
• and the periodic extension, where, the Xk’s (and hence the whole signal Xt) are

assumed periodic: Xk = Xk%N if |k| > K, where N = 2K + 1 is the digitized signal
length, and k%N is the only integer k′ ∈ {−K, · · · ,K} such that k − k′ ∈ NZ.

In any case, the error should increase as we get closer to the border of the signal domain.
Indeed any arbitrary extension brings but false contributions outside the domain. In addition,
since interpolation kernels are bound to yield perfect reconstruction of the samples, we should
expect the MSE to oscillate, vanishing at any sample location while reaching a maximum
approximately midway between successive samples. In both extension scenarios, we will derive
a decomposition of the mean squared error as a product of a modulation and of an envelope:

RMSE[X.∆K∗hK ](t)
2 = sin2(πt)

π2 A(t). We will assess the behavior of the envelope as t varies.
As expected, we will see that this behavior depends mostly on the distances from t to both
borders of the signal domain, ±(K + 1

2).
Definition 3.2 (border distances). Let |t| ≤ K + 1

2 . We set

δ(t) := min(K +
1

2
− t,K +

1

2
+ t),

∆(t) := max(K +
1

2
− t,K +

1

2
+ t).
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ψ+
α

ψ−
α

dΨX(ω)
dΨ̃α(ω)

ψ−
α {|ω|≤π}dω

ψ+
α {|ω|≤π}dω

απ π
ω

Figure 3.1. Power spectrum decomposition for a given α (the illustration actually refers to densities).

3.3. A scheme to evaluate the power spectral MSE component. In this part, we expose
a general scheme to evaluate the power spectral MSE component. It can be applied to any
reconstruction system hK provided we can compute the power spectral MSE for signals of
constant spectra and oversampled ones.

The starting point of this approach derives from a trivial statement. If one can find a
spectrum dΨ̃ such that dΨ ≤ dΨ̃ (in the sense that dΨ̃ − dΨ is a positive measure), then
MSEdΨ ≤ MSEdΨ̃. For instance, to come up with an upper bound, one has to find a dΨ̃+

such that dΨ ≤ dΨ̃+ and for which an upper bound can be computed. Similarly, for a lower
bound, one shall find dΨ̃− such that dΨ̃− ≤ dΨ and derive a lower bound for dΨ̃−.

In this paper, we will consider signals of bounded spectrum. In that case, dΨX(ω) =
ψX(ω)dω satisfying ∃ψ− ≥ 0, ψ+ ≥ 0 such that ∀ω, ψ− ≤ ψX(ω) ≤ ψ+. Then, using dΨ̃+ :=
ψ+

1|ω|≤πdω and dΨ̃− := ψ−1|ω|≤πdω, both being constant on [−π, π], the spectral power MSE
component bounds reduce to the same computation for a Nyquist band-limited white-noise.
In fact, the bounds obtained in this way will not be sharp because ψ+ and ψ− fall apart.
Consequently, we will introduce finer bounds on the spectrum as illustrated in Figure 3.1.

Proposition 3.3. Let 0 ≤ α < 1 and assume that 1|ω|≥απdΨX(ω) is bounded. Denote

by ψ+
α and ψ−α the corresponding bounds and dΨ̃α the positive component of the measure

dΨX(ω)− ψ+
α 1|ω|≤πdω. Then,

MSEdΨX ≤MSEdΨ̃α
+ ψ+

αMSE1|ω|≤πdω,

MSEdΨX ≥MSEdΨ̃α
+ ψ−αMSE1|ω|≤πdω.

Remark 3.1.With the previous proposition, we have reduced the bounds computation to two
types of signals:

• Nyquist band-limited white-noise (dΨX(ω) = 1|ω|≤πdω), and
• over-sampled signals (supp(dΨX(ω)) ⊂ {|ω| ≤ απ}).
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All the derivations needed to achieve such a decomposition are valid in the case of multi-
variate band-limited RPs. In the next two sections, we focus on two reconstruction systems
closely related to the Shannon-Whittaker formula. For each of them, we derive an accurate
closed-form upper-bound that builds upon the previous decomposition. Given the technicality
of the corresponding derivations, we consider univariate signals in a first stage and extend the
results to multivariate RPs in a subsequent section.

4. Truncated Shannon-Whittaker interpolation RMSE. In this section, we consider the
case of the truncated Shannon-Whittaker interpolation, where the interpolation kernel is sinc
in the univariate case (d = 1). It is interesting to point out that this method corresponds to the
ideal Shannon-Whittaker reconstruction under the assumption that all unknown samples are
null. This assumption does not imply that the signal vanishes outside the acquisition domain
since this would contradict with Heisenberg’s principle (in the context of band-limited signals).
As such, it is hardly sustainable in practice, since it would be a striking coincidence that the
signal vanishes exactly at the sample locations. The weakly stationary hypothesis that we
have made is clearly much more satisfactory.

4.1. Spectral representation. Applying Theorem 3.1 with hK = sinc yields the following
corollary.

Corollary 4.1. Let Xt be a strictly Nyquist band-limited random process of average µ, then

RMSE[X.∆K∗sinc](t)
2 =

sin2(πt)

π2


µ2
∣∣∣∑|k|>K (−1)k

t−k

∣∣∣2
+

1
2π

∫ ∣∣∣∑|k|>K eiωk (−1)k

t−k

∣∣∣2 dΨX(ω)



Proof. We have merely used that sin(π(t− k)) = sin(πt)(−1)k.

Definition 4.2 (Average and power spectral envelopes). In what follows, we set ∀|t| < K + 1
2

Aµ(t) :=µ2

∣∣∣∣∣∣
∑
|k|>K

(−1)k

t− k

∣∣∣∣∣∣
2

,

AdΨ(t) :=
1

2π

∫ ∣∣∣∣∣∣
∑
|k|>K

eiωk
(−1)k

t− k

∣∣∣∣∣∣
2

dΨ(ω).

Whenever these notions are involved, it will be implicitly assumed that |t| < K + 1
2 .

Proposition 4.3. Let Xt be a random process, then

AdΨX (t) =
∑

|k|>K,|m|>K

RX(k −m)
(−1)k+m

(t− k)(t−m)
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Proof.

AdΨX (t) =
1

2π

∫ ∣∣∣∣∣∣
∑
|k|>K

eiωk
(−1)k

t− k

∣∣∣∣∣∣
2

dΨX(ω)

=
1

2π

∫ ∑
|k|>K,|m|>K

eiω(k−m) (−1)k+m

(t− k)(t−m)
dΨX(ω)

=
∑

|k|>K,|m|>K

(−1)k+m

(t− k)(t−m)

1

2π

∫
eiω(k−m)dΨX(ω)

=
∑

|k|>K,|m|>K

RX(k −m)
(−1)k+m

(t− k)(t−m)
.

In the previous derivation, exchanging the sum and the integral is allowed thanks to the
reconstruction systems dominated condition proven in Proposition 2.9. Indeed, this condition
implies that:∣∣∣∣∣∣

∑
|k|≤K,|m|≤K

(−1)k+m

(t− k)(t−m)

∣∣∣∣∣∣ =
π2

sin2(πt)

∣∣∣∣∣∣
∑

|k|≤K,|m|≤K

sinc(t− k)sinc(t−m)eiω(k−m)

∣∣∣∣∣∣
=

π2

sin2(πt)

∣∣∣∣∣∣
∑
|k|≤K

sinc(t− k)eiωk

∣∣∣∣∣∣
2

≤
(
πM(t)

sin(πt)

)2

We will now evaluate the behavior of each of the envelope terms.

Proposition 4.4 (Average envelope component).Let Xt be a Nyquist band-limited random
process of average value µ, then

Aµ(t) ≤µ2

(
1

δ(t) + 1
2

+
1

∆(t) + 1
2

)2

,

where δ(t) and ∆(t) are the distances defined in Definition 3.2.

Proof. This derives easily from the fact that Aµ(t) is expressed in Definition 4.2 via an
alternating series when |t| < K + 1.

4.2. Band-limited white-noise RMSE.

Definition 4.5 (Nyquist band-limited white noise).
A random process Wt is a Nyquist band-limited white noise of variance σ2 if dΨW (ω) =
σ2
1|ω|≤πdω.

Theorem 4.6. Let Wt be a Nyquist band-limited white-noise of unit variance. Then, ∀|t| <
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K + 1
2 ,

AdΨW (t) ≤ 1

δ(t)
+

1

∆(t)
,

AdΨW (t) ≥ 1

δ(t) + 1
2

+
1

∆(t) + 1
2

.

Proof. Using Proposition 4.3,

AdΨ(t) =
∑

|k|>K,|m|>K

RW (k −m)
(−1)k+m

(t− k)(t−m)
.

Then, given that Wt is a Nyquist band-limited white-noise, RW (t) = sinc(t). Therefore,

AdΨ(t) =
∑
|k|>K

1

(t− k)2
.

Then a monotonicity argument ensures that 1
(t−k)2

≥
∫ k+1
k

1
(t−y)2

dy, which implies that

AdΨ(t) ≥
∫ ∞
|y|≥K+1

1

(t− y)2
dy

=
1

K + 1− t
+

1

K + 1 + t

=
1

δ(t) + 1
2

+
1

∆(t) + 1
2

.

A similar monotonicity argument would not suffice to derive the desired upper bound.
Instead we shall use the convexity of gt : y 7→ 1

(t−y)2
on intervals of the form ]k − 1

2 , k + 1
2 [

whenever max(|k − 1
2 |, |k + 1

2 |) > t. Then Jensen’s inequality applied to a uniform random
variable on [k − 1

2 , k + 1
2 ] implies

1

(t− k)2
=gt

(
k + 1

2 + k − 1
2

2

)
≤
∫ k+ 1

2

k− 1
2

gt(y)dy =

∫ k+ 1
2

k− 1
2

1

(t− y)2
dy.

Therefore, we obtain

AdΨ(t) ≤
∫ ∞
|y|≥K+ 1

2

1

(t− y)2
dy

=
1

K + 1
2 − t

+
1

K + 1
2 + t

=
1

δ(t)
+

1

∆(t)
.
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4.3. Oversampled signal RMSE. In this part we will consider signals oversampled with
a rate α < 1. To derive an upper bound we will need the following technical lemma.

Lemma 4.7. ∀|ω| < π and ∀|t| < K + 1,∣∣∣∣∣∣
∑
|k|>K

eiωk
(−1)k

t− k

∣∣∣∣∣∣ ≤ 2

|1 + eiω|

(
1

δ(t) + 1
2

+
1

∆(t) + 1
2

)
.

Proof. In what follows, we will use a summation by parts (a.k.a. Abel transformation).
Given two sequences, ak, bk, k ≥ 0, we can denote S(b)kK =

∑
K<k′≤k bk′ . Then we have,∑

K<k≤K′
akbk = aK′S(b)K

′
K −

∑
K<k<K′

(ak+1 − ak)S(b)kK .

Using this formula with ak := 1
t−k and bk = (−eiω)k, one obtains for |t| < K + 1∣∣∣∣∣∣

∑
K<k≤K′

eiωk
(−1)k

t− k

∣∣∣∣∣∣ ≤|aK′S(b)K
′

K |+
∑

K<k<K′

|ak+1 − ak||S(b)kK |

=
1

K ′ − t
|S(b)K

′
K |+

∑
K<k<K′

(
1

k − t
− 1

k + 1− t
)|S(b)kK |.

Noting that

|S(b)kK | =
∣∣∣∣(−eiω)K+1 1− (−eiω)k−K

1 + eiω

∣∣∣∣
≤ 2

|1 + eiω|

and letting K ′ →∞, we obtain∣∣∣∣∣∑
k>K

eiωk
(−1)k

t− k

∣∣∣∣∣ ≤ 2

|1 + eiω|
∑
k>K

(
1

k − t
− 1

k + 1− t
)

=
2

|1 + eiω|
1

K + 1− t
.

By symmetry, ∣∣∣∣∣ ∑
k<−K

eiωk
(−1)k

t− k

∣∣∣∣∣ ≤ 2

|1 + e−iω|
1

K + 1 + t
=

2

|1 + eiω|
1

K + 1 + t
.

Proposition 4.8. Let α < 1 and dΨ a spectrum supported on {|ω| ≤ απ}, then

AdΨ(t) ≤σ2
α

(
1

δ(t) + 1
2

+
1

∆(t) + 1
2

)2

,
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where

σ2
α :=

1

2π

∫
|ω|≤απ

4

|1 + eiω|2
dΨ(ω).

Proof. This is a direct consequence of Definition 4.2 and of the previous lemma.

Remark 4.1.Since 1
|1+eiω |2

∼
ω→π

1
(π−ω)2

the condition on the support could be replaced by one

with respect to the total variation of 1
(ω−π)2

dΨX(ω) near π. A similar variation was proposed

in [5]. None of these refinements can tackle the case of band-limited white-noise.

4.4. General case. The next theorem summarizes some of the previous results. For the
white-noise component, only the upper-bound is alluded to. For the record, the lower-bound
served to demonstrate the sharpness of the upper-bound.

Theorem 4.9. Let Xt be a random process and 0 ≤ α < 1 such that 1|ω|≥απdΨX(ω) is
bounded. We have shown a decomposition of the mean squared error RMSE[X.∆K∗sinc](t)

2

into the following terms (in order of appearance in the formula below):

• a modulation,
• an average envelope component,
• a low-frequency envelope component and
• a white-noise envelope component.

This decomposition leads to the following estimate valid ∀|t| < K + 1
2

RMSE[X.∆K∗sinc](t)
2 ≤sin2(πt)

π2
×



µ2
X

(
1

δ(t)+ 1
2

+ 1
∆(t)+ 1

2

)2

+

σ2
α

(
1

δ(t)+ 1
2

+ 1
∆(t)+ 1

2

)2

+

σ′2α

(
1
δ(t) + 1

∆(t)

)


,

where

σ′
2
α := ‖1|ω|≥απdΨX(ω)‖∞

and

σ2
α :=

1

2π

∫
|ω|≤απ

4

|1 + eiω|2
dΨ̃α(ω) =

1

2π

∫
|ω|≤απ

2

1 + cos(ω)
dΨ̃α(ω).

Proof. Nothing remains to be proved since the theorem only summarizes previous devel-
opments (namely Proposition 3.3, Corollary 4.1, Definition 4.2, Theorem 4.6 and Proposi-
tion 4.8). Note that dΨ̃α was defined in Proposition 3.3, where σ′2α was referred to as ψ+

α .
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5. Periodic Shannon-Whittaker interpolation RMSE. In the previous section, we have
looked upon the interpolation method most classically considered in the context of truncation
error. However, this method is hardly used in practice mainly because its implementation
is very inefficient. In the class of linear shift invariant methods, the ones based on rapidly
decaying kernels (such as B-splines) are therefore strongly preferred. Here we consider yet
another approach often referred as DFT zero-padding interpolation. While the underlying
kernel displays as slow a decay as sinc, efficient implementations are often possible thanks
to the Fast Fourier Transform algorithm. Here again we only consider the univariate case
(d = 1).

5.1. Periodic extension and DFT interpolation. We first introduce the natural recon-
struction kernel for band-limited periodic signals of length N . Instead of relying on an explicit
formula, we prefer the following definition as a periodized version of the “band-limited Dirac
distribution” (i.e. of the cardinal sine) since it makes its purpose clearer.

Definition 5.1 (Discrete cardinal sine).Let N = 2K+1. We define the discrete cardinal sine
function of rank K as

sincdK(t) :=
∑
q∈Z

sinc(t− qN).

Based on this definition, it is trivial to show that the truncated interpolation based on the
discrete cardinal sine is in fact equivalent to the infinite Shannon-Whittaker expansion, if the
signal is periodic. But let us first provide some useful notations.

Definition 5.2 (Index periodization).For k ∈ Z, let us define the unique couple of indices
qN (k) and k%N such that |k%N | ≤ K and

k = qN (k)N + k%N.

Proposition 5.3 (Periodic extension). Let Xt be a random process, then

X.∆K ∗ sincdK(t) =
∑
k∈Z

Xk%N sinc(t− k).

Proof.

X.∆K ∗ sincdK(t) =
∑
|k|≤K

XksincdK(t− k)

=
∑
|k|≤K

Xk

∑
q∈Z

sinc(t− k − qN)

Using the substitution k′ = k + qN , we indeed obtain the appropriate formula

X.∆K ∗ sincdK(t) =
∑
k′

Xk′%N sinc(t− k′)
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In the next proposition, we provide two alternate expressions of the discrete cardinal sine.

Proposition 5.4.For all t ∈ R, we have
1.

(sincdK(t− k))|k|≤K = DFT −1
(
e−2iπt l

N

)
|l|≤K

(5.1)

2.

sincdK(t) =
sin(πt)

N sin( πN t)
.

Proof.
1. This point is somehow another formulation of the definition by taking into consid-

eration the link between the Fourier transform and the DFT. More precisely, since
sinc(t− τ) = F−1(e−itω1{|ω|<π})(τ) its periodized version with period N verifies

(sincdK(t− k))|k|≤K = DFT −1(e−it2π
l
N 1{|2π l

N
|<π})|l|≤K = DFT −1(e−it2π

l
N )|l|≤K

2. The second point derives from the first and the following computation

sincdK(t) =DFT −1
(
e−2iπt l

N

)
|l|≤K

[0] =
1

N

∑
|l|≤K

e−2iπt l
N

=
1

N
e2iπtK

N
1− e−2iπtN

N

1− e−2iπt 1
N

=
1

N

sin(πt)

sin(π t
N )

.

The previous proposition gives us the opportunity to make the link with the standard
DFT interpolation.

Corollary 5.5 (DFT interpolation).∀t,

X.∆K ∗ sincdK(t) =
1

N

∑
|l|≤K

DFT
(
(Xk)|k|≤K

)
[l]e2iπt l

N .

Proof. According to the previous proposition,

X.∆K ∗ sincdK(t) =X.∆K ∗ DFT −1(e2iπt l
N )

=
∑
|k|≤K

XkDFT −1(e2iπt l
N )[k].

Then using Parseval’s identity, we get

X.∆K ∗ sincdK(t) =
1

N

∑
|l|≤K

DFT (Xk)[l]DFT (DFT −1(e2iπt ·
N ))[l]

=
1

N

∑
|l|≤K

DFT (Xk)[l]e
2iπt l

N .
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5.2. Spectral representation. Applying Theorem 3.1 with hK(t) = sincdK(t) yields the
following corollary.

Corollary 5.6. Let Xt be a Nyquist band-limited random process of average value µ, then

RMSE[X.∆K∗sincdK ](t)
2 =

sin2(πt)

π2

1

2π

∫ ∣∣∣∣∣∣
∑
|k|>K

(eiωk − eiωk%N )
(−1)k

t− k

∣∣∣∣∣∣
2

dΨ(ω).

Proof. First, we need to show that the average component is null. As a reminder,

MSEµ(t)(sincdK) = µ2

∣∣∣∣∣∣1−
∑
|k|≤K

sincdK(t− k)

∣∣∣∣∣∣
2

.

But according to Equation (5.1),∑
|k|≤K

sincdK(t− k) =DFT
(
(sincdK(t− k))|k|≤K

)
[l = 0]

=DFT
(
DFT −1

(
(e2iπt l

N )|l|≤K

))
[l = 0]

=e2iπt 0
N = 1.

Other than that, Theorem 3.1 and then Proposition 5.3 imply that

MSEdΨ(sincdK) =
1

2π

∫ ∣∣∣∣∣∣
∑
k∈Z

eiωksinc(t− k)−
∑
|k|≤K

eiωksincdK(t− k)

∣∣∣∣∣∣
2

dΨ(ω)

=
1

2π

∫ ∣∣∣∣∣∣
∑
|k|>K

(eiωk − eiωk%N )sinc(t− k)

∣∣∣∣∣∣
2

dΨ(ω)

and once again we can use that sin(π(t− k)) = sin(πt)(−1)k.
Definition 5.7 (Power spectral envelope). In what follows, we set

BdΨ(t) :=
1

2π

∫ ∣∣∣∣∣∣
∑
|k|>K

(eiωk − eiωk%N )
(−1)k

t− k

∣∣∣∣∣∣
2

dΨ(ω).

We will refer to it as the power spectral envelope component.

5.3. Band-limited white-noise RMSE.

5.3.1. Global bounds. Lemma 5.8. Let Wt be a Nyquist band-limited white-noise of unit
variance. Then, following the notations as in Definitions 4.2 and 5.7

AdΨW (t) =
∑
|k|≤K

π2

N2 sin2( πN (t− k))

(
1− sinc2(

1

N
(t− k))

)
,

BdΨW (t) =
∑
|k|≤K

2π2

N2 sin2( πN (t− k))

(
1− sinc(

1

N
(t− k))

)
.
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Proof. See the supplementary file.

Proposition 5.9.Let Wt be a Nyquist band-limited white-noise of unit variance. Then

AdΨW (t) ≤ BdΨW (t) ≤ 2AdΨW (t).

Proof. The previous lemma can be reformulated as

AdΨW =
∑
|k|≤K

ak and BdΨW =
∑
|k|≤K

bk,

with ak, bk ≥ 0 and

bk
ak

= 2
1− sinc( 1

N (t− k))

1− sinc2( 1
N (t− k))

=
2

1 + sinc( 1
N (t− k))

:= r

(
1

N
(t− k)

)
.

A simple analysis shows that the function r is even and increasing on [0, 1]. As a result,
∀|u| ≤ 1, r(u) ∈ [r(0), r(1)] = [1, 2].

Corollary 5.10. Let Wt be a Nyquist band-limited unit white-noise. Then, ∀|t| < K + 1
2

1

δ(t) + 1
2

+
1

∆(t) + 1
2

≤ BdΨW (t) ≤ 2

δ(t)
+

2

∆(t)
.

Proof. These inequalities derive from the previous proposition and from Theorem 4.6.

The comparison of the lower and upper bounds reveals that these two estimates of BdΨW

are much less tight than the corresponding bounds on AdΨW . In the next two sections, we
will improve this situation by providing accurate asymptotic estimates of BdΨW . They should
in particular allow us to determine which of the upper and lower bound is tighter when
considering limit cases (near the border and at the center of the signal domain).

5.3.2. Exact equivalent inside the image domain. In this part and the following one, we
derive more accurate estimates of the error based on two complementary asymptotic analyses
when K becomes large. To account for this limiting case, we allow the interpolation location
t to vary with K which in practice boils down to consider sequences tK . Here we tackle the
case where tK cannot get closer to the image border than by a margin linear in K.

Proposition 5.11. Let Wt be a Nyquist band-limited white-noise of unit variance. Then,
∀|tK | ≤ βK with β < 1,

BdΨW (tK) ∼
N→∞

2π2

N

∫ 1
2
− tK
N

− 1
2
− tK
N

1

sin2 π(u)
(1− sinc(u)) du.

Proof. See the supplementary file.
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Remark 5.1.When tK = o(K), we obtain

BdΨW (tK) ∼
N→∞

2π2

N

∫ 1
2

− 1
2

1

sin2(πu)
(1− sinc(u)) du

'1.08
2

K + 1
2

' 1.08

(
1

δ(tK)
+

1

∆(tK)

)
.

Therefore, the global lower bound computed previously is almost tight.

5.3.3. Tight asymptotic bounds near the image border. The previous equivalent does
not remain true when loosing the constraint |tK | ≤ βK, that is when tK approaches the
domain border. However, we have a slightly weaker result in this case.

Proposition 5.12. Let Wt be a Nyquist band-limited white-noise of unit variance. Then,
∀|tK | ≤ K with δ(tK)

K → 03,

2

δ(tK) + 1
2

+O
(

log(N)

N

)
≤BdΨW (tK) ≤ 2

δ(tK)
+O

(
1

N

)
,

where the Landau notation aN = O(bN ) means that ∃M > 0,∀N, |aN | ≤MbN .

Proof. See supplementary file.

Remark 5.2.Note that under the theorem’s assumptions, 1
∆(tK) = 1

N−δ(tK) = O( 1
N ) and

then this time, it is the global upper bound that is tight.

5.4. Oversampled signal RMSE. Lemma 5.13. ∀|ω| < π and ∀|t| < K + 1/2,∣∣∣∣∣∣
∑
|k|>K

(eiωk − eiωk%N )
(−1)k

t− k

∣∣∣∣∣∣ ≤ 4

|1 + eiω|

(
1

δ(t) + 1
2

+
1

∆(t) + 1
2

)
.

Proof. See the supplementary file.

Proposition 5.14. Let α < 1 and dΨ a spectrum supported on {|ω| ≤ απ}, then

BdΨ(t) ≤4σ2
α

(
1

δ(t) + 1
2

+
1

∆(t) + 1
2

)2

,

where BdΨ(t) was given in Definition 5.7 and

σ2
α :=

1

2π

∫
|ω|≤απ

4

|1 + eiω|2
dΨ(ω).

Proof. This is a direct consequence of the previous lemma.

3This assumption ensures that the terms in the big O are negligible compared to the remaining ones.
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5.5. General case. The next theorem summarizes some of the previous results. For the
white-noise component, it only considers the global upper-bound and does not include the
asymptotic analyses that were presented earlier.

Theorem 5.15. Let Xt be a random process and 0 ≤ α < 1 such that 1|ω|≥απdΨX(ω) is
bounded. We have shown a decomposition of the mean squared error RMSE[X.∆K∗sincd](t)

2

similar to the one of the truncated Shannon-Whittaker interpolation, that is a decomposition
into:

• a modulation,
• an average envelope component,
• a low-frequency envelope component and
• a white-noise envelope component.

RMSE[X.∆K∗sincdK ](t)
2 ≤sin2(πt)

π2
×



0
+

4σ2
α

(
1

δ(t)+ 1
2

+ 1
∆(t)+ 1

2

)2

+

2σ′2α

(
1
δ(t) + 1

∆(t)

)

 ,

where

σ′
2
α := ‖1|ω|≥απdΨX(ω)‖∞

and

σ2
α :=

1

2π

∫
|ω|≤απ

4

|1 + eiω|2
dΨ̃α(ω) =

1

2π

∫
|ω|≤απ

2

1 + cos(ω)
dΨ̃α(ω).

Proof. Here again nothing remains to be proved since the theorem only summarizes pre-
vious developments (namely Proposition 3.3, Corollary 5.6, Definition 5.7, Corollary 5.10 and
Proposition 5.14). Note that dΨ̃α was defined in Proposition 3.3, where σ′2α was referred to
as ψ+

α .

Remark 5.3.The main differences with the truncated Shannon-Whittaker case are that

• the average envelope vanishes
• multiplicative factors are larger (at most twice as large if speaking of RMSE).

6. Multivariate extension. In section 2, all the derivations were made in the case of
multivariate RPs and for a generic reconstruction system hK . These derivations have led to a
general form of the truncation RMSE (see Theorem 2.12), which is at the basis of the upper
bounds derived afterwards. Because of their high degree of technicality the upper-bounds
could only be obtained for two specific reconstruction systems and for univariate RPs. The
latter limitation is all the more unfortunate since images are two-dimensional. In this section,
we partly extend our results in the multivariate case.

6.1. General behavior of the multivariate MSE. Considering the common case of sep-
arable reconstruction systems, then the reconstruction is itself separable in the sense that

X̃
[hK ,K]
t :=

∑
|k|≤K Xk

∏d
j=1 hKj (tj − kj) can be obtained by applying successive univariate
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reconstructions. Indeed,

X̃
[hK ,K]
t :=

∑
|k1|≤K1

· · ·

 ∑
|kd|≤Kd

XkhKd(td − kd)

 · · ·hK1(t1 − k1)

Based on this observation, it is tempting to deduce that the errors entailed by each univari-
ate stage accumulate, so that the multivariate error would be the sum of individual univariate
errors. This argument is fallacious because the statistical properties of the original RP are
not preserved during any of the univariate reconstruction stages.

Remark 6.1. Let us restate the spectral representation of Theorem 2.12:

MSEµ(t)(hK) :=µ2

∣∣∣∣∣∣1−
d∏
j=1

∆Kj ∗ hKj (tj)

∣∣∣∣∣∣
2

,

MSEdΨ(t)(hK) :=
1

(2π)d

∫ ∣∣∣∣∣∣1−
d∏
j=1

(
eiωj(.−tj)∆Kj

)
∗ hKj (tj)

∣∣∣∣∣∣
2

dΨ(ω).

We have used a slightly different (but equivalent) formula for the spectral component in order
to highlight a common property of both components, namely the fact that they involve terms
of the form ∣∣∣∣∣∣1−

d∏
j=1

aj

∣∣∣∣∣∣ .
In sections 4 and 5, we have derived univariate upper-bounds of the form |1 − aj | ≤ uj. We
now turn them into multivariate bounds by using the following algebraic identity

1−
d∏
j=1

aj =
d∑
j=1

(1− aj)
∏
m<j

am.

Therefore, ∣∣∣∣∣∣1−
d∏
j=1

aj

∣∣∣∣∣∣ ≤
d∑
j=1

|1− aj |
∏
m<j

|am| ≤
d∑
j=1

uj
∏
m<j

(1 + um). (6.1)

Applying Equation 6.1 in the context of a 2D image leads to the following result.

Proposition 6.1.Let hK be either sinc or sincdK and let Xt1,t2 a band-limited RP. Then

RMSE[X.∆K∗hK ](t1, t2)2 =
sin2(πt1)

π2
O
(

1

δ1(t)2
+

1

δ1(t)

)
+

sin2(πt2)

π2
O
(

1

δ2(t)2
+

1

δ2(t)

)
+

sin2(πt1)

π2

sin2(πt2)

π2
O
(

1

δ1(t)2
+

1

δ1(t)

)
O
(

1

δ2(t)2
+

1

δ2(t)

)
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where ∀j ∈ {1, 2}

δj(t) := min(Kj +
1

2
− tj ,Kj +

1

2
+ tj),

∆j(t) := max(Kj +
1

2
− tj ,Kj +

1

2
+ tj).

Proof. This is a consequence of Equation 6.1 and either Theorem 4.9 (for sinc) or Theorem
5.15 (for sincd).

Remark 6.2.The leading constants were intentionally left out of the upper-bound because
they no longer have simple expressions. Neither do they remain sharp at all. Indeed the
inequality |ai| ≤ (1 + ui) is quite loose.

In any case, we are interested here by the general behavior of the multi-variate MSE. The
upper-bound shows that far from the border, the behavior is essentially the same as in 1D, or
more precisely as the sum of two 1D interpolation errors. Near the border however, the error
might behave like the product of two 1D interpolation errors.

6.2. White-noise. Since the white-noise contribution of the MSE was clearly identified
as the main one far enough from the border of the image, we develop a more accurate upper-
bound for such signals. In this case, the procedure of Remark 6.1 can be refined and yields a
much simpler and sharper result. Indeed, we will show that the upper bound for the MSE is
truly additive in that case. We will rely on the following expression of the MSE.

Proposition 6.2. Let (hK) a reconstruction system, and let Wt a band-limited white noise
of unit variance. Then,

MSEdΨW (t)(hK) = 1−
d∏
j=1

∑
|kj |≤Kj

hKj (tj − kj)
(
2sinc(tj − kj)− hKj (tj − kj)

)
Proof. To simplify the notations, we set

aj(ωj , tj) :=
(
eiωj(.−tj)∆Kj

)
∗ hKj (tj) =

∑
|kj |≤Kj

hKj (tj − kj)eiωj(tj−kj).

With such notations,

MSEdΨW (t)(hK) =
1

(2π)d

∫ ∣∣∣∣∣∣1−
d∏
j=1

(
eiωi(.−tj)∆Kj

)
∗ hKj (tj)

∣∣∣∣∣∣
2

dΨW (ω)

=
1

(2π)d

∫ ∣∣∣∣∣∣1−
d∏
j=1

aj(ωj , tj)

∣∣∣∣∣∣
2

dΨW (ω)

=
1

(2π)d

∫
1− 2

d∏
j=1

aj(ωj , tj) +
d∏
j=1

aj(ωj , tj)
2dΨW (ω)

=RW (0)−
d∏
j=1

∫ π

−π
2aj(ωj , tj)− aj(ωj , tj)2dωj
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Then we can use that RW (0) = 1,
∫ π
−π aj(ωj , tj)dωj =

∑
|kj |≤Kj hKj (tj − kj)sinc(tj − kj) and

∫ π

−π
aj(ωj , tj)

2dωj =
∑

|kj |≤Kj ,|mj |≤Kj

hKj (tj − kj)hKj (tj −mj)sinc(mj − kj)

=
∑
|kj |≤Kj

hKj (tj − kj)2.

In order to apply similar derivations as in Remark 6.1 in a finer way, we need a tight
upper-bound for the terms involved in the product.

Lemma 6.3.Let (hK) a reconstruction system subject to ∀K,∀|t| ≤ K + 1
2 ,∑

|k|≤K

hK(k − t)sinc(t− k) ≥ 0

and ∑
|k|≤K

|hK(k − t)|2 ≤ 1

Then, ∣∣∣∣∣∣
∑
|k|≤K

hK(t− k)(2sinc(t− k)− hK(t− k))

∣∣∣∣∣∣ ≤ 1.

Proof. This is a mere application of the Cauchy-Schwarz inequality.

It is easy to verify the assumptions of the previous lemma for sincdK and for sinc and
obtain the following result.

Theorem 6.4.Let hK be either sinc or sincdK , and let Wt a band-limited white noise of unit
variance. Then,

MSEdΨW (t)(hK) ≤ C
d∑
j=1

sin2(πtj)

π2

(
1

δj(t)
+

1

∆j(t)

)

where C = 1 for sinc or C = 2 for sincdK and ∀j

δj(t) := min(Kj +
1

2
− tj ,Kj +

1

2
+ tj),

∆j(t) := max(Kj +
1

2
− tj ,Kj +

1

2
+ tj).
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Proof. Let bj :=
∑
|k|≤K hK(t−k)(2sinc(t−k)−hK(t−k)). We know that |bj | ≤ 1. Then

MSEdΨW (t)(hK) =1−
d∏
j=1

bj

=
d∑
j=1

(1− bj)
∏
m<j

bm

≤
d∑
j=1

|1− bj |
∏
m<j

|bm|

≤
d∑
j=1

|1− bj |

Since 1 − bj corresponds to the MSE in the univariate case, we can use the results in Theo-
rem 4.6 and Corollary 5.10 to conclude the proof.

7. Experiments. In this section, we will validate our theoretical bounds by comparing
them to an empirical estimator of the interpolation RMSE. We will first explain quickly the
way we derive this estimator (see Section 7.1). Since our theoretical bounds rely on the image
spectrum statistics, we also need a practical way to evaluate them; this point is discussed
in Section 7.2. Last, we consider several test images and provide comparisons between the
bounds and the estimator in the two interpolation cases that we have tackled in this article.

7.1. Empirical estimator. The core difficulty to derive an accurate RMSE estimator re-
sides in that we need to know the ground-truth interpolated signal. The only way to truly
obtain such a thing is to generate synthetic Nyquist band-limited data analytically and then
perform sampling. We have chosen a different path because synthetic signals are not repre-
sentative of real images.

Instead, starting from an image of large size, we can perform an interpolation using the
entire image and use it as a reference value to evaluate the accuracy of an interpolated image
obtained by only using a part of the image (see Figure 7.1). We will refer somehow improperly
to the reference as the “ground-truth” interpolated signal. When computing the reference,
we will always use the truncated Shannon-Whittaker scheme. Let us denote X̃gt

t := X.∆K′ ∗
sinc(t) the “ground-truth” interpolate and X̃h

t := X.∆K ∗ hK(t) the evaluated interpolate
with K � K ′. We want to empirically estimate

MSE[X̃gt − X̃h](t) := E
[
(X̃gt

t − X̃h
t )2
]
.

To do so, we assume that each of the M image rows is a realization of the same RP Xt and
that interpolation is carried on along the rows. Then the empirical estimator is

MSEemp[X̃
gt − X̃h](t) :=

1

M

M∑
i=1

(
X̃gt
i,t − X̃

h
i,t

)2
.
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-K’ K’-K Kt

    X̃i,·∆K

    X̃i,·∆K′

  X̃h
i,t

  X̃gt
i,t

Figure 7.1. The RMSE estimator is based on a comparison between the interpolation method under consid-
eration applied to a partial image (blue rectangle) and the truncated Shannon-Whittaker interpolation applied
to the entire image (green rectangle). Using either a partial row Xi,..∆K or a complete row Xi,..∆K′ , we can
compute two interpolated values at position t: X̃h

i,t and X̃gt
i,t. Last, we can estimate the mean squared difference

by empirically averaging over the rows.

7.2. Spectrum statistics. Observing carefully Theorems 4.9 and 5.15, one cannot fail to
notice their dependence on three statistics: µX , σ2

α and σ′2α. In our experimental study case,
since we consider real images, we do not have direct access to these statistics. Therefore we
must estimate them from the image. On the one hand, the average value µX can be evaluated
by using the classical empirical estimate

µX '
1

MN

∑
i,j

Xi,j .

On the other hand, σ2
α and σ′2α are spectral statistics that require an estimate of the spectrum

of the image. A classical theorem due to Wiener and Khintchine [24] states that

dΨX(ω) = dE[|F(X)(ω)|2].

For estimation purpose, we will assume that the spectrum is absolutely continuous

dΨX(ω) = ψX(ω)dω.

Then the Wiener-Khintchine theorem boils down to the following identity

ψX(ω) = E[|F(X)(ω)|2].

Consistently to our approach to empirically estimate the truncation error, we continue to
think of each row Xi,t as a realization of a unique RP Xt. Thanks to the FFT algorithm, for
each row i, |F(Xi)|2(ω) can be estimated at uniformly sampled frequency loci ωl on [−π, π],
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(a) input K = 75,K′ = 800 (b) spectrum

Figure 7.2. Image of a urban zone, input and cumulative spectrum.

more precisely ωl := 2πl
N for |l| ≤ K. Subsequently, we can empirically average these values to

get ψX(ωl) ' 1
M

∑M
i=1 |DFT (Xi)|2(ωl). The previous spectrum estimator ψX(ωl) is known as

a periodogram. It is long established that the periodogram is biased and inconsistent. More
sophisticated techniques leading to a better trade-off between bias and variance are commonly
preferred. In our case, we have used the multitaper approach [21].

From this point, the estimators for σ′2α and σ2
α are straightforward

σ′
2
α ' max

ωl≥απ
(ψX(ωl)) and σ2

α '
1

N

∑
ωl

2

1 + cos(ωl)
ψ̃α(ωl),

with ψ̃α(ωl) = max
(

0, ψα(ωl)− σ′2α
)

.

Remark 7.1.The parameter α can be chosen arbitrarily in [0, 1]. This gives us a degree of
freedom to optimize the tightness of our upper-bound. In practice, we evaluate the bound for
several values of α and keep the smallest result.

7.3. Experimental observations. This part is dedicated to the concrete evaluation of the
RMSE estimator and the upper bound for both interpolation methods considered in this study.
For each input image, we display in a first figure (such as Figure 7.2) the entire image and
a mask highlighting the region that we have selected to test the interpolation accuracy. In
the same figure, we display the cumulative spectrum of the image, estimated as explained
in Section 7.2. This allows us to visually assess whether the image contains an important
white-noise component or if it is more likely over-sampled. In the spectrum plots, the x axis
corresponds to the frequency normalized between 0 and 1, that is to say to the parameter α.
Also to help assessing the degree of oversampling, the 99% p-value of the cumulative spectrum
is displayed. Lower p-values indicate strong over-sampling.

For a given input image, the actual results are presented in a second figure (such as Fig-
ure 7.3), where the curve of the RMSE estimate is overlaid on top of the theoretical upper
bound. Each time, two sub-figures are used, showing the results obtained with both interpo-
lation methods. In fact, in order to make the figures more readable we have extracted the
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(a) truncated (b) periodic (c) B-spline (3 and 9)

Figure 7.3. RMSE estimator and upper bounds for the Urban image. The image interpolated with the
considered method is shown in the background. The “naive” B-spline interpolation (3 and 9) shown on the right
keeps the observed samples. A better global B-spline interpolate can nonetheless be obtained by a modification
of these samples [22].

envelope of the errors, by considering only half-integer locations. For comparison purpose,
a third sub-figure displays the RMSE estimator in the case of the 3rd-order and 9th-order
B-spline. Beware that, although prevalent in image processing, the considered B-spline imple-
mentation is naive and a better global approximation can be obtained by using a corrective
digital filter [22].

To illustrate the different behaviors predicted thanks to our upper bounds, we have chosen
two images with different spectral content. The urban image corresponds to a strong texture
similar to a white noise and the moor image to a lower one. More examples can be easily
considered through our interactive IPOL demo4. As a first remark, we would like to point out
that the experiments we have driven validate our upper bounds. Besides, the upper bounds
provide a fair assessment of the actual error.

Beyond its validation purpose, the RMSE estimator allows us to draw several conclusions
with respect to the accuracy of the considered image interpolation techniques. One striking
fact concerns the comparison of the accuracy of both interpolation methods to the quantiza-
tion error, which we recall to be equal to 0.29. In cases with large white noise-like textural
component, the interpolation error is everywhere larger than the quantization error. Indeed,

4Submitted to Image Processing on Line, (www.ipol.im), workshop, http://dev.ipol.im/~simonl/ipol_
demo/loic_truncate/

http://dev.ipol.im/~simonl/ipol_demo/loic_truncate/
http://dev.ipol.im/~simonl/ipol_demo/loic_truncate/
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(a) input K = 75,K′ = 800 (b) spectrum

Figure 7.4. Image of a moorland, input and cumulative spectrum.

(a) truncated (b) periodic (c) B-spline (3 and 9)

Figure 7.5. RMSE estimator and upper bounds for the Moor image. The image interpolated with the
considered method is shown in the background.

at the center of the urban image (that is at a distance of 75 from the border), it is equal to 0.7
for both Shannon-Whittaker interpolations. For sure, the previous fact would not hold true
for larger images. And since we have shown that the Shannon-Whittaker interpolation RMSE
varies as the square root of the distance to the image border, we can extrapolate that these
methods will yield errors negligible compared to quantization at places located further than
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750 pixels from the border. This is already quite problematic but it remains manageable.
On the contrary, if one desires the interpolation accuracy to compete with quantization in
the context of high dynamic range images, the situation would become simply intractable.
Indeed, one can interpret HDR images as mapping onto the range of values between 0 and
255 (that is like normal images) and having a quantization step smaller than 1. For instance,
this step would be 1

256 for images encoded on 16 bits. As a result, the quantization RMSE
would be divided by 256, and the necessary distance from the boundary to obtain this given
degree of accuracy would be multiplied by 2562.

Considering the comparison between the Shannon-Whittaker methods and naive B-splines,
the most noticeable difference concerns the shape of the RMSE curve. In the case of B-splines
the error decreases much faster. This is an expected behavior since the B-spline interpolation
kernel itself decreases exponentially. This fast decay leads to a region where the error is
approximately constant. Unfortunately, this constant is much larger than the corresponding
values for Shannon-Whittaker methods, and thus, larger than the quantization RMSE. The
impact of the order of the B-spline is also illustrated in Figure 7.3, where B-spline orders
3 and 9 are considered. The higher order spline leads to a lower error. This observation is
coherent with the well-known convergence properties of B-splines towards sinc as the order
tends to ∞. It is however noteworthy that even an 9-order spline results in quite different
error magnitudes compared to Shannon interpolation.

8. Conclusion. Stimulated by the prospect of high accuracy image processing, we have
studied the interpolation errors due to spatial truncation. Sub-pixel image registration is a
typical example where such information matters. Although similar studies have been pub-
lished in the past, their knowledge does not seem widely spread among the aforementioned
community. More importantly, their applicability to natural images is limited.

We now summarize the main contributions of the article. First, building upon a generic
spectral representation of the interpolation RMSE, we have proposed to decompose the signal
into an oversampled part and a white-noise. This simple scheme enabled us to consider the
two types of signal separately and to undertake the derivation of dedicated upper bounds. Up
to this point every result was expressed generically and could then be applied to any linear
and shift-invariant interpolation method. On the contrary, closed-form upper-bounds were
only obtained for the truncated Shannon-Whittaker interpolation and the DFT interpolation.
Up to minor differences, both methods lead to similar upper bounds. On the contrary, the
two types of components yield highly different behaviors of the error decay along the distance
to the image boundaries. For over-sampled signals the RMSE decreases as the inverse of the
distance, while for white-noise it decreases as its square root.

Besides, we have conducted a set of experiments on real images that permitted us to
compare the upper-bounds to an empirical estimate of the RMSE. Not only did this validate
the correctness of our theoretical developments, but it also completed the study by providing
actual values of the RMSE. As a by-product, we have shown that naive B-splines approaches
are superior to the DFT only near the border of the image. However, this conclusion is only
valid under the band-limited assumption. On the contrary, we surmise that a local spline
interpolation model is more adapted than the Shannon-Whittaker interpolation for aliased or
noisy images, and it is systematically better adapted near the boundary. It is also viable when
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the image is largely oversampled. Besides, B-splines present several computational advantages
and are not prone to visual artefacts such as the Gibbs phenomenon.

In addition, success in high accuracy processing depends on the conditions under which
an interpolation approach achieves a level of fidelity comparable to quantization. From this
study, one can conclude that for 8-bit quantization the conditions are met at locations from
several hundreds to a thousand pixels away from the border. Given the typical range of current
image sizes, this constraint is certainly limiting but not prohibitive. However, perspectives
are much less promising for HDR images since every additional quantization bit translates
virtually into a four-fold rise of the necessary distance.

In future works, we plan to take advantage of the results developed inhere to provide a
better analysis of various image processing techniques. On the long run we believe that it will
enable us to improve the performance of these techniques. Among others, our priority goes
to sub-pixel image registration and subsequently to stereo/multi-view 3D reconstruction.
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[20] P. Thévenaz, T. Blu, and M. Unser, Interpolation revisited, Medical Imaging, IEEE Transactions on,
19 (2000), pp. 739–758.

[21] David J Thomson, Spectrum estimation and harmonic analysis, Proceedings of the IEEE, 70 (1982),
pp. 1055–1096.

[22] M. Unser, Sampling-50 years after Shannon, Proceedings of the IEEE, 88 (2000), pp. 569–587.

[23] Michael Unser and Akram Aldroubi, A general sampling theory for nonideal acquisition devices,
Signal Processing, IEEE Transactions on, 42 (1994), pp. 2915–2925.

[24] N. Wiener, Generalized harmonic analysis, Acta Mathematica, 55 (1930), pp. 117–258.

[25] Z. Xu, B. Huang, and X. Li, On fourier interpolation error for band-limited signals, Signal Processing,
IEEE Transactions on, 57 (2009), pp. 2412–2416.

[26] K. Yao and J. B. Thomas, On truncation error bounds for sampling representations of band-limited
signals, Aerospace and Electronic Systems, IEEE Transactions on, (1966), pp. 640–647.

[27] Pei-xin Ye and Zhan-jie Song, Truncation and aliasing errors for Whittaker-Kotelnikov-Shannon sam-
pling expansion, Applied Mathematics-A Journal of Chinese Universities, 27 (2012), pp. 412–418.


