
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Parsing Facades with Shape Grammars and
Reinforcement Learning

Olivier Teboul, Member, IEEE, Iasonas Kokkinos, Member, IEEE, Loic Simon, Member, IEEE,
Panagiotis Koutsourakis, Member, IEEE, and Nikos Paragios, Fellow, IEEE,

Abstract—In this work we use Shape Grammars for Facade Parsing, which amounts to segmenting 2D building facades into
balconies, walls, windows and doors in an architecturally meaningful manner. The main thrust of our work is the introduction
of Reinforcement Learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with
techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing.
We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based
tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade
parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use
RL to exploit bottom-up, image-based guidance during optimization.
We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by
previous methods. We validate our method under diverse imaging conditions and make our software and results available online.

Index Terms—Image Parsing, Shape Grammar, Reinforcement Learning, Semantic Segmentation, Markov Decision Processes.

F

1 INTRODUCTION

THe proliferation of large urban image datasets,
the advent of commercial applications such as

Google/Bing maps, and the revival of the scene un-
derstanding problem have brought the interpretation
of building images at the forefront of computer vi-
sion research. The problem has both practical and
theoretical interest: on the practical side commercial
applications need to automatically interpret massive
image datasets in terms of semantically meaningful
structures. On the theoretical side solving the prob-
lem involves the fitting of models that accommodate
structure variation and continuous variables, which is
largely unexplored.

In this work we focus on the task of partitioning a
rectified image of a building into a set of predefined
semantic classes such as wall, window, balcony and
roof. We address the optimization problem illustrated
in Fig. 1: we have a pixel-wise merit function indicat-
ing the match of the observations with the candidate
classes, and we want to find an architecturally meaning-
ful partitioning of the image that will optimally bun-
dle together the responses of these merit functions.

Enforcing architectural consistency can be achieved
by incorporating knowledge about buildings through

• O. Teboul is with the MAS laboratory, Ecole Centrale Paris, Grande
Voie des Vignes, 92290, Chatenay-Malabry, and Google, Inc.
E-mail: olivier.teboul@ecp.fr

• I. Kokkinos, L. Simon, P. Koutsourakis and N. Paragios are with Ecole
Centrale Paris.

proper models. The main challenge lies in dealing
with an unknown number of floors or windows,
which amounts to accommodating structure variation.
We therefore turn to grammatical models which use
recursion, and employ Shape Grammars whose gener-
ative power has been convincingly demonstrated in
the computer graphics community [1], [2].

Our contributions are as follows: first we develop
a variant of Shape Grammars, termed Binary Split
Grammars, which allows us to maintain the ex-
pressive power of Shape Grammars, while making
them amenable to optimization algorithms for pars-
ing. Second, we develop a Reinforcement Learning-
based approach to the 2D facade parsing problem
that supports versatile and flexible algorithmic ideas
such as state aggregation, data-driven exploration
and the incorporation of user defined constraints.
A crucial advantage of this approach over Dynamic
Programming-based alternatives, such as the 2D ex-
tension of the CYK algorithm [3] is speed. We design
three appropriate merit functions and show that the
performance of our approach transfers successfully
over different problem settings. Last, we share on-
line an extension of the dataset of [4] along with our
parsing software to help reproduce our experiments
and compare with other techniques.

We start by introducing a first example of the
problem in 1D in Sec. 2; through this example we
introduce basic notions used in the rest of the paper.
In Sec.s ?? we present background material on Binary
Split Grammars and Markov Decision Processes re-
spectively. The parsing algorithm, some customized

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

original wall windows roof shop parsing

Fig. 1. Overview of the method: our goal is to segment the
original image using the pixel-wise merit functions for each
class (wall, window, roof and shop) and a shape grammar
that enforces architectural consistency. The merit function
values range from 0 (blue) to 1 (red), and measure data
fidelity to the corresponding class. The colors of the segmen-
tation indicate the different classes.

techniques developed in particular for facade parsing
as well as specific merit functions are given in Sec.s ??
respectively. We provide experimental results in Sec. 8
and compare to related works in Sec. 9.

2 1D PARSING EXAMPLE

We start by considering a 1D semantic segmentation
example for an image I of width W and height H , as
shown in Fig. 2. In the context of our work this image
can represent an artificial floor made of windows
(white) and walls (black).

Our task is to set in alternation the width of the
window and the next wall by choosing from a set
of admissible widths. The pattern followed by these
decisions can be described recursively in terms of the
1D shape grammar given in Table 1. The set of possible
segmentations that are in accord with this grammar
G constitutes the language L(G) of the grammar; we
elaborate on L(G) in Sec. 3. In the shape grammar
paradigm, our problem is to parse the image with the
grammar, namely to find the set of grammar rules
which combined give an optimal parse of the image.

Optimality is defined through pixel-wise merit
functions m(x, y, c) that measure how good label c
(e.g. wall/window) is for a pixel in position (x, y). In
our 1D example the merit at x, y is 1 if c is the right
label (window on white pixels, wall on black pixels)
and 0 otherwise. Our task is to find:

S∗ = arg max
S∈L(G)

∑
x,y∈I

m(x, y, S(x, y)), (1)

where S(x, y) is the label given to pixel x, y by S and
S ∈ L(G) enforces that S is generated by the grammar,
i.e. is admissible.

We can rephrase this optimization as a decision
process: considering that at any time step t we have
segmented the image from x = 0 to x = xt, our
decision amounts to determining the width of the next
element. Due to the problem’s 1D structure, finding

Fig. 2. A synthetic signal that has to be segmented into of
wall and window (black and white, respectively) areas.

fl → flWa
fl → flWin
flWa → wall(x) flWin, x ∈ [[10, 100]]
flWin → window(x) flWa, x ∈ [[10, 80]]

TABLE 1
A simple floor grammar. Each value of x represents a

different rule, therefore this grammar is made of 164 rules.

the optimal combination of sequence of decisions
(wall and window widths) can be efficiently solved
by Dynamic Programming.

To address the 2D problem of facade parsing we
will elaborate on three concepts introduced above in
a simpler form for the 1D case. First, we use binary
split grammars to model the more complex layouts of
facades (Sec. 3). Second, we formulate the problem in
the Markov Decision Process framework and solve it
using Reinforcement Learning (Sec.s ?? respectively).
Third, merit functions are learned to deal with the
variability of appearances of facade elements (Sec. 7).

3 BINARY SPLIT GRAMMARS

Shape Grammars (SGs) were introduced in the 1970’s
[5], [6] to model complex but structured geometries,
and were successfully applied to Procedural Modeling
in [1], [2], [7]; more recently SGs have been extended
to deal with a broader range of architectural styles [8]
and to incorporate physical constraints [9].

Even though SGs have been typically used for
synthesis/graphics, our objective is to use them for
the inverse problem, namely the parsing of facade
images. While the goal of generic image parsing may
involve a broad range of geometrical constituents [10],
dictionaries made of axis-aligned rectangular shapes
[11], [12], [4] may suffice for facades.

We exploit this observation and propose in this
section a particular case of SGs called Binary Split
Grammar (BSG); the main merit of this particular
grammar is that it lends itself to efficient optimization,
as we detail in Sec. 5.

3.1 Shapes and Shape Grammars

The basic concept of a shape grammar is a labeled
rectangle, namely a 5-tuple (c, x, y, w, h), where c is
a label or symbol and (x, y, w, h) ∈ N4 defines the
position and dimensions of an axis-aligned rectangle;
for notational convenience we may denote a labeled
rectangle as c(x, y, w, h). A shape S is a set of labeled

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

rectangles: S = {s1, . . . , sn}; we will consider these
rectangles disjoint.

A grammar rule modifies a shape by replacing a
labeled rectangle si ∈ S by a set of labeled rectangles
(s1i , . . . , s

k
i). In our work we consider only binary split

rules (k = 2) that split a labeled rectangle in two
along either the horizontal or vertical directions. We
denote a rule to break symbol A along axis ‘ho’ (for
horizontal) into symbols B and C as:

A(x, y, w, h)→ho:α {B(x, y, α, h), C(x+α, y, w−α, h)}.
(2)

The dimensions of B and C are uniquely determined
given A, the split direction ho, and size α, where α ≥
w; if α = w, C is the empty symbol. For brevity we
introduce the shorthand notation:

A→ B(α)C (3)

which indicates that shape A is split horizontally
(↑ means vertically) into a shape of width α and
the remainder. For instance, suppose that we have
a shape S = {A(0, 0, 10, 1)} and a rule r : A →
B(3)C. After applying r on S, we obtain S =
{B(0, 0, 3, 1), C(3, 0, 7, 1)}.

A BSG G is a 4-tuple (N , T ,R, ω), where N is a set
of non-terminals, T is a set of terminals, ω is a special
non-terminal called the axiom and R a finite set of
binary split rules. A labeled rectangle c(x, y, w, h) is
terminal if it cannot be further expanded by a rule.

To generate a shape S according to a BSG G we start
from the axiom {ω}. At each step of the generation a
non-terminal element si ∈ S is selected and a rule
r ∈ R applicable to si is chosen. After applying
r the labeled rectangle si is removed from S and
replaced by its offsprings. This process is called a
derivation process and stops when S only contains
terminal elements. We call such a shape a segmentation.
If the axiom ω corresponds to the image domain, a
shape made of terminal elements is an image partition
that associates every rectangular region with a label.

We can equivalently represent S in terms of a parse
tree rooted at ω. During the derivation, the offsprings
of si are added as its children to the tree. At the
end of the process the leaves of the parse tree are
terminal elements while its internal nodes represent
non-terminal labeled rectangles.

The language L(G) is the set of all the possi-
ble derivations of the grammar G; in our case this
amounts to all possible image segmentations.

3.2 Cyclic symbols and rules

Given a grammar G we say that a symbol c is cyclic
if there exists a parse tree in L(G) that has a subtree
rooted on c and contains at least another symbol c.
To simplify the optimization in Sec. 5, we require that
for any rule A → B(x)C where both B and C are
non-terminals, only C is cyclic.

Rules are mutually cyclic if the LHS of one rule
appears in the RHS of the other. When dealing with
repeated alternated structures (such as wall and win-
dows in the previous example) the use of mutually
cyclic rules is a convenient way to deal with an
arbitrary number of element repetitions. For instance,
Table 1 enables us to express any of the segmentations
involved in the 1D example in Fig. 2 thanks to flWa
and flWin being mutually cyclic.

4 MARKOV DECISION PROCESSES

In the section we provide the necessary background
for Markov Decision Processes, as these are central to
understanding the Reinforcement Learning tools that
we employ subsequently.

4.1 Definitions
Decision Processes: An MDP is described by a 4-

tuple (S,A, P,R), where S is a set of states, A is a
set of actions, P the transitions probabilities between
states and R the expected rewards consecutive to the
actions taken at every state.

At time t, the environment’s situation is summa-
rized by a state variable, st ∈ S. Based on st, the agent
takes the action at ∈ A(st). This action modifies the
environment, which is reflected in the change of the
state from st to st+1 as well as a reward rt+1.

The transition from a state s to a state s′ consequent
to action a is in general non-deterministic, and is
governed by a probability distribution P a

ss′ :

P a
ss′ = p(st+1 = s′|st = s, at = a). (4)

In our setting the state transitions are deterministic,
since these amount to applying deterministic gram-
mar rules; we are thus working with a contrived
version of Eq. 4, where p amounts to a Dirac func-
tion placing all its mass around the deterministically
estimated value of st+1.

The reward rt+1 received for selecting action a in
state s and arriving in state s′ can again be non-
deterministic; we denote its expectation as Ra

ss′ :

Ra
ss′ = E [rt+1 | st = s, at = a, st+1 = s′] , (5)

where the expectation uses the conditional distribu-
tion on rewards p(rt+1 = r | st = s, at = a, st+1 = s′)
given the combination of s, s′, a. As we will see in
Sec. 5.3 the treatment of stochastic rewards along the
lines of Eq. 5 is essential to the formulation of our
parsing algorithm.

As suggested by the forms of Eq.s ??, the tran-
sition probabilities among states and the associated
expected rewards have the Markov property, namely
depend only on the current state and the selected
action and not on the past states and actions.
Return: The goal of the agent is to maximize its long-
term reward, also called the return, defined in terms of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

the amount of rewards accumulated until the end of
the process. We call episode a sequence of states from
an initial one to the end, called the horizon T . The
return at time step t is defined as the sum of observed
rewards gathered from time t+ 1 to the horizon.

Γt =
T∑

k=t+1

rk. (6)

We note that we do not necessarily know in advance
the value of the horizon T but in our case we practi-
cally only consider only finite MDPs, i.e. T <∞.
Policy: A policy π(s, a) determines the preference that
the agent has for taking action a when being in state
s; a probabilistic policy can be constructed as:

π(s, a) = p(a|s), (7)

where p(a|s) indicates the probability that the agent
will choose action a at state s. We first note that this is
an agent-centric quantity, and can in general be inde-
pendent of the environment statistics. Operationally,
we can say that at state s the agent chooses an action
a by sampling p(a|s); this then triggers the agent-
environment interaction, dictated by p(s′|a, s) and
p(r|s′, a, s) involved in Eq. 4 and Eq. 5 respectively,
which describe how the environment reacts to the
agent’s actions and rewards them.

A policy dictates a behavior and an associated
distribution on returns; and the goal of learning is
to change the policy so that the expected return
increases. This brings us to the concept of a value
function that is used to measure the quality of a policy.
Value Function: The value function or Q-function
Qπ(s, a) represents the gain that the agent can expect
to accumulate in the long-run, if starting at state s it
takes action a and follows the policy π thereafter:

Qπ(s, a) = E [Γt | st = s, at = a] . (8)

The expectation is over the joint distribution on states,
actions and rewards implied by (a) the probabilistic
policy π, which determines the probability with which
actions will be chosen at different actions, and (b)
the distributions p(s′|a, s), p(r|s′, a, s) which indicate
the environment’s rewards for the agent’s actions.
Bellman’s equation exploits the problem’s Markov
nature to express the value function recursively as:

Qπ(s, a) =
∑
s′

P a
ss′

Ra
ss′ +

∑
a′∈A(s′)

π(s′, a′)Qπ(s′, a′)

,
(9)

where we observe how the different factors of ran-
domness decouple; in particular for the considered
(s, a) pair we marginalize over the subsequent states
s′ and the anticipated rewards rt+1 corresponding
to the (s, s′, a) combinations to recover the expected
reward

∑
s′ P

a
ss′R

a
ss′ ; and then we consider that start-

ing from s′ the agent will choose the subsequent

actions according to π(s′, a′), which we therefore use
to marginalize Qπ(s′, a′) over a′.

By gathering the equations in Eq. 9 for all state-
action pairs we obtain a system of linear equations
that can in principle be inverted to get Qπ; but in
practice the state space is large and direct inversion
may be impossible. Optimality equations: We can
compare two policies in terms of their value functions:
a policy π is better than a policy π′ for a given MDP,
if:

∀s, max
a

Qπ(s, a) ≥ max
a

Qπ′
(s, a). (10)

We call a policy optimal and denote it as π∗, if:

Q∗(s, a)
.
= Qπ∗

(s, a) = max
π

Qπ(s, a). (11)

Q∗ satisfies the Bellman optimality equation:

Q∗(s, a) =
∑
s′

P a
ss′

[
Ra

ss′ +max
a′

Q∗(s′, a′)
]
. (12)

The optimal policy is related to Q∗: to maximize
cumulative reward, at every state s, the agent must
choose action a∗ = argmaxa Q

∗(s, a). An optimal
policy is therefore deterministic and derived from Q∗.

4.2 Solving MDPs
The equations above provide us with optimality con-
ditions, but not with means to obtain an optimal pol-
icy. The most common approach for this is Dynamic
Programming (DP); thanks to the problem’s Markov
structure, an optimal solution can be obtained by
gradually sweeping through states and considering
all possible actions for every state. But if the number
of state-action combinations becomes large (as is the
case in our problem), such techniques may become
inefficient. Another option for policy learning is to
use Monte-Carlo sampling; there the agent is allowed
at each step to take decisions with some randomness,
and after the episode finishes, namely after a sequence
of actions, the decisions taken are used to assess, and
improve a given policy. However in Monte-Carlo sam-
pling the whole process needs to be ‘run’ before its
score is assessed, thus the particular Markov structure
of the problem is not being exploited. Reinforcement
Learning lies somewhere in between, in the sense that
policy improvement takes place in a gradual, ‘state-
per-state’ manner, as in Dynamic Programming, while
at every step a single action is considered, as in Monte
Carlo. We refer to [13] for an excellent presentation of
the connections between these methods.

In particular Reinforcement Learning continuously
updates the Q function and the agent’s policy in an
interleaved manner. In case Qπ is a good estimate of
Q∗ at every state s the ’greedy’ action

a∗ = argmax
a

Qπ(s, a). (13)

should be preferred. However if Qπ is a bad estimate
then the policy of the agent should leave some room

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Algorithm 1 Q-Learning

∀s, a Q(s, a) = 0
loop

s← first state of the episode
repeat
a∗ ← argmaxa Q(s, a)
a← sample from πa∗(s, a) (Eq. 14)
Take action a, observe s′, r
Q(s, a)← α [r +maxa′ Q(s′, a′)]+(1−α)Q(s, a)
s← s′

until s = end state of the episode
end loop

for exploration. The problem of balancing the good
degree of exploration is called the exploration - exploita-
tion trade-off. This balance should also evolve over
time, so that the agent explores more at the beginning
when it has a poor knowledge of its environment and
less at later iterations.

This can be accomplished by using an ’ϵ-greedy
policy’ which chooses at every state s with probabil-
ity 1 − ϵ the ’greedy’ action and with probability ϵ
randomly selects another action:

πa∗(s, a) =

(
1− ϵ(n− 1)

n

)
δ(a∗, a) +

ϵ

n
[1− δ(a∗, a)] ,

(14)
where δ is the Kronecker function, and n is the num-
ber of actions available at state s. If the policy tends
towards a greedy policy, by making the exploration
rate ϵ decrease to 0, then the policy is said to be greedy
in the limit of infinite exploration (GLIE), which is a
common assumption in the analysis of convergence
of iterative algorithms ([13], [14]).

Having pinned down how the agent’s policy is
determined from Q, we now turn to the task of im-
proving it. The Q-Learning algorithm [15], illustrated
in Algorithm 1, can learn optimal policies through
repeated sampling. At time t of a given episode the
agent is in state s, samples an action a that brings it to
state s′ while the agent collects a reward r. Q-learning
updates the estimate of Q∗(s, a) after selecting an
action a by using equation (12). The update uses only
the new state s′ and replaces the expected reward Ra

ss′

by the observed reward r. The update equation of Q-
learning is:

Qk+1(s, a) = αk

[
r +max

a′
Qk(s

′, a′)
]
+(1−αk)Qk(s, a),

(15)
where the learning rate αk gradually decreases with
the number of iterations, ensuring that the algorithm
gradually converges [15].

4.3 Hierarchical MDPs

So far we have been considering the case where
the application of every rule generates an immediate

reward; this is in general a limitation, since in many
cases taking an action cannot be directly evaluated. As
a concrete example that relates to our task, consider
decomposing a facade into a sequence of floors and
walls; when picking the height of a floor we cannot
directly estimate the merit of this action, as this also
requires knowing the actions taken to break a floor
into window/wall symbols, and potentially also the
windows into glass and balcony terminals.

What we are thus facing is a hierarchy of tasks: the
reward for a task is defined in terms of the sum of
the rewards accumulated during its execution, which
can in general require a recursive computation: taking
an action amounts to calling a routine, which in turn
may call other routines. The merit of the particular
action is only available once all the relevant routines
have returned. The combination of task hierarchies
with MDPs has been addressed in the context of
Reinforcement Learning, [16], [17], [18] and is also
related to Semi-Markov DPs (SMDPs), in the sense
that the reward for an action does not arrive directly
after taking the action. In our case we ignore the
time lag between the execution of a high-level action
and the receipt of the associated reward, since this
does not affect the final solution’s quality; therefore
several of the technicalities related to SMDPs become
irrelevant. The Q-learning updates are identical with
the ones presented previously, with the difference that
the ‘immediate’ rewards now refer to rewards that are
recursively computed through the task hierarchy.

5 PARSING ALGORITHM

We now formulate parsing as an MDP in the 1D case
and a Hierarchical MDP in the 2D one.

5.1 MDP Formulation
We formulate the parsing problem as follows: we are
provided with a BSG G = (N , T ,R, ω) of language
L(G) and an image I with pixel-wise merit m(x, y, c)
that indicates how appropriate it is to associate a pixel
(x, y) ∈ I with label c ∈ T . Our goal is to find the
segmentation S ∈ L(G) that maximizes the global
merit:

S∗ = arg max
S∈L(G)

∑
x,y∈I

m(x, y, S(x, y)). (16)

Despite the functional’s simplicity, its optimization
is hard since the constraints involve the language of
the input grammar. To see this, first note that the
cardinal number of L(G) does not allow to perform
an exhaustive search. Moreover the language L(G) is
described implicitly by the grammar; to make sure
the language constraint is met, we need to resort to
synthesizing the segmentation through a derivation
process. Finally we also note that L(G) contains seg-
mentations with various layouts and therefore cannot
be described by a fixed number of parameters. Parsing

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(flWa,0) (flWin,x1)

wall

(flWa,x2) (flWin,x3)

wall

(flWa,x4)

wallwindow window

Fig. 3. Constructing a parse tree can be seen as a decision
process. At each step the agent is placed on a white node
and takes a decision which creates two nodes: the shaded
node below is terminal and provides a reward, while the
agent moves to the following, non-terminal, white node. Note
that we have a large number of possible states, correspond-
ing to the possible values of the second, ’x’, argument of the
state.

an image with a grammar is therefore tantamount to
optimizing over an unknown number of parameters.

Our method is based on the following observation:
the grammar derivation is a decision process and
parsing an image can be considered as finding the
sequence of decisions that best explains the input im-
age. In this work, we consider that an agent is parsing
an image by interacting with the (partial) parse tree
of the segmentation. At each time step, the agent is
at a given node of the tree that represents the state of
the environment and chooses a rule to apply on this
node; it is the action taken by the agent. A node is
a labeled rectangle and applying a rule splits it into
two other labeled rectangles. The agent proceeds with
the parse in a Depth-First-Search (DFS) order, until all
rectangles are decomposed into terminals (end state
of the decision process). Whenever a terminal node
is generated the agent receives a reward based on
the pixel-wise merit of the created region. Since the
overall merit is incrementally accumulated during the
derivation process its maximization can be cast in
terms of a Markov Decision Process; intuitively, the
Markov Property can be associated with the gram-
mar’s context-free nature.

We note that a connection between parsing and
reinforcement learning has been explored in an NLP
context in [19]; in our work we establish a connection
between parsing with 2D shape grammars and rein-
forcement learning and address the problem-specific
technical hurdles involved, as described below.

5.2 1D Parsing
Getting back to the 1D example presented in Sec. 5.2,
we now pin down the states, actions and rewards of
the corresponding decision process.

5.2.1 MDP definition
At each time step the agent splits a non-terminal
labeled rectangle (c, x, y, w, h) into two and decides
where to split it by choosing a rule.

States encapsulate the information that the agent
uses when taking a decision. A full-blown state would
include the 5-tuple (c, x, y, w, h). For the 1D case y
and h can be omitted as they are constant, while w is
related with x through the relation w = W −x, where

W is the size of the image and x,w are the position
and width of the state respectively. We thus describe
the non-terminal node (c, x, y, w, h) with a the lower-
dimensional state:

s = (c, x).

In the grammar of Table 1 the possible states cor-
respond to labeled rectangles starting at any pixel
position x and ending at position W , where W is the
size of the image. Since there are two non-terminal
labels (‘flWin’ and ‘flWall’) and W = 300, our MDP
involves 600 states.

Actions correspond to the rules comprising the
grammar (Table 1). Each value of the split parameter x
corresponds to a different rule; the number of possible
values of x is discretized to a fixed range of values. In
the particular example of Sec. 2, windows range from
10 to 80 pixels wide and walls from 10 to 100.

Rewards are obtained by aggregating the pixel-wise
merit of regions. In particular for the 1D case each rule
creates a terminal and a non-terminal rectangle. The
non-terminal rectangle represents what remains to
be segmented. Denoting by (c, x, y, w, h) the terminal
labeled rectangle created by the rule, we define the
region-wise merit as the sum of the pixel-wise merit
of the region. This gives the immediate reward r:

r = m(c, x, y, w, h) =
x+w∑
i=x

h∑
j=1

m(i, j, c). (17)

The sum of the rewards accumulated along an episode
is thus equivalent to the functional defined in equa-
tion (16): solving the associated MDP is equivalent to
parsing the input image.

Constructing the parse tree can be seen as a se-
quential process (see Fig. 3): at each white node the
agent takes a decision which determines the node
to which it moves next, as well as the received re-
ward, computed based on the shaded node below.
The action that gives the biggest immediate reward
is not necessarily the best action in the long run; it
is therefore necessary to establish a policy that will
allow the agent to act in a more ‘far-sighted’ manner.

5.2.2 Solving the MDP
We now compare how Dynamic Programming (DP)
and Reinforcement Learning solve the MDP defined
above. DP is straightforward for this problem since we
have a small number of states and actions, while the
state-action transitions and rewards are deterministic.
Fig. 4 shows the Q∗(s, a) function for different posi-
tions of the symbol ‘flWin’ and every possible action.
Low values are blue and high values are red.

Unlike DP Q-learning is guaranteed to deliver the
optimal solution only upon convergence; solutions
found in between may be suboptimal. To assess the
variability in performance across different runs, we
ran a Q-learning agent for T = 10000 episodes, using

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

0 50 100 150 200 250 300
s

0
10
20
30
40
50
60

a

DP estimation of Q ∗ (s,a)

0 50 100 150 200 250 300
s

0

10

20

30

40

50

60

70

Q-Learning estimation of Q ∗ (s,a)

10 20 30 40 50 60 70 80

action a
10000

10500

11000

11500

12000

12500

13000

13500

14000

Q
(s
,a

)

x=26

DP

RL

10 20 30 40 50 60 70 80

action a
0

2000

4000

6000

8000

10000

12000

14000

x=45

Fig. 4. Comparison of the Q∗ function computed by DP and
RL on the 1D parsing example of Sec. 2, for the window sym-
bol. The first row shows the values of Q∗(s, a) as estimated
by DP (left) and RL (right): the horizontal axis indicates the
state s at which the agent currently is, the vertical axis the
putative action a taken at s, and the color shows the value of
Q(s, a) (blue is low and red is large). The second row shows
the values of Q∗(s, a) estimated by DP (red dashed) and
RL (solid blue) at two different states, corresponding to the
columns of Q(s, a) at x = 26 (left) and x = 45 (right).

a ϵ-greedy policy where both ϵ and the learning rate
decrease exponentially from 1 to 0.01. The run-time
is about the same as the one with DP, in the order
of 10 seconds. In practice, the Q-function is neither
uniformly, nor exactly evaluated. The agent explores
the state-space, but gives more credit to the reward-
wise interesting regions. To illustrate this, consider
that we are at position x = 26 (lower left in Fig. 4).
The agent is in a region of the state space that pays-off:
this is indeed a white region of the image. The exact
DP solution, in dashed red, is well approximated by
the Q-learning one represented in solid blue. On the
contrary, in the middle of a poorly interesting region
(lower right) the estimate of Q∗ is far from its exact
value. There, the state of the agent corresponds to
a position which is in the middle of a black region.
Putting a window in a region representing walls does
not yield a large reward, irrespective of the window
size. The fact that position x = 45 consistently did not
result in large rewards resulted in the agent passing
more rarely through it at later rounds, and therefore
a worse approximation of Q∗(s, a) at that particular s.

This also indicates the main mechanism through
which RL can accelerate optimization, namely by de-
voting fewer computation resources to unpromising
states: unlike DP, RL evaluates Q∗(s, a) only around
promising parts of the state space. This property of
RL becomes increasingly important in the 2D parsing
case, where the complete knowledge of the best so-
lution at every state might be both computationally
intractable and unnecessary.

5.3 2D Parsing
We now generalize the 1D case to the 2D one using
Hierarchical MDPs: since the procedural mechanisms
are the same in 1D and 2D we can still consider
an agent responsible for the derivation process; as
in 1D the agent uses a DFS scheme for parsing and
takes a sequence of decisions involving actions (i.e.

W

y

y'
c

c

y+h

y+h'

H

s=(c,x)

Fig. 5. Two different atomic shapes in red (c,x,y,w,h)
and (c,x,y’,w’,h’) are mapped to the same state
s=(c,x), since along the split dimension X they share the
same position x and symbol c.

rule applications) and associated rewards (i.e. merit
function integrals). However in the 2D case some
rules are not placing any terminal symbols but only
non-terminals; the agent now faces a hierarchy of
tasks. We now define the states and rewards involved
in this task hierarchy.

5.3.1 State Aggregation
As outlined in Sec. 5.2 each node (state) is described
in terms of four geometric parameters and one label,
(c, x, y, w, h). For the 1D case we omitted (y, h) as
irrelevant, and eliminated w using w = W − x. Even
though parameters should in principle be dealt with
in 2D parsing, this results in a dramatic increase in
computational complexity.

Equally important with speed is the quality of the
decisions that such an agent learns. For example two
different floors have different vertical positions y and
thus we could not prevent the agent from learning
two different policies on these floors, even though we
expect them to be structured the same way. In order to
introduce consistency we force the states representing
the positions of the elements in these floors to be the
same. Thus, we propose to replace the full-blown state
s = (c, x, y, w, h) with a condensed, aggregated state:

sα = (c, z), (18)

where z ∈ {x, y} is the position along the split di-
rection, namely the direction along which the labeled
rectangle is split in the current iteration. This idea is il-
lustrated in Fig. 5: when splitting along a direction the
positions along other dimensions are considered to be
irrelevant. From now on we will only use aggregated
states, so we will omit the α superscript for simplicity.
During the execution of our algorithm the full-blown
state is only useful in measuring the rewards for
terminals: this requires a full-blown indication of their
rectangular domains. However the Q functions for all
non-terminals are learned using aggregated states.

The first advantage of state aggregation consists in
reducing the number of possible states, which now
shares the same order of magnitude as in the 1D case.
The second advantage consists in ensuring consis-
tency along the facade; without state aggregation one

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Algorithm 2 Parsing Algorithm
∀s, a Q(s, a) = 0
∀s π(s, .) ∼ U(A(s))
ϵ = ϵ0, k = 1/n log (ϵ0/ϵn)
for i = 0→ n do

reset environment
s← (Axiom,0)
ϵ← ϵ · e−k

while s ̸= end state do
runtask(s,Q, π)

end while
end for
return greedy policy w.r.t. Q

would be forced to use Context-Sensitive Grammars
or include the whole parse tree in order to enforce
symmetry constraints, e.g. for different floors. In-
stead of such computationally intractable alternatives,
we propose to use a common policy over all non-
terminals which should be split in a common way. For
instance, when splitting floors, the learned policy will
depend exclusively on the horizontal coordinate, and
not on the height of the floor. This enforces symmetry
constraints implicitly, aligning windows across floors,
or balconies inside of floors.

These advantages come at the price of stochasticity
in the decision process. In particular the uncertainty
emerges due to stochasticity in the rewards: since state
aggregation can map two different labeled rectangles
to the same state (e.g. two windows lying at different
floors, as shown in Fig. 5), the agent can obtain
different rewards, while performing the same action
on the same aggregated state. This is why the ability
of Reinforcement Learning to cope with stochastic re-
wards becomes indispensable in our problem setting.

5.3.2 Hierarchical Learning

As mentioned earlier, the 2D nature of the problem
calls for more complex BSGs where a rule may create
two non-terminal symbols. In that case, we still need
to define a reward subsequent to such an action.

A rule is of the form: A → B(x)C. It creates two
nodes B(xB, yB, wB , hB) and C(xC , yC , wC , hC), with
C being potentially empty. From these two nodes,
only one can be cyclic. We always start by deriving
the acyclic one first and assume here it is B. Then we
have only two cases: B is either terminal or it is non
terminal and acyclic.

If B is terminal, we are facing the same case as
in 1D: the reward r is received immediately after the
application of the rule and is equal to the region-wise
merit m(B, xB , yB , wB , hB). The next state is either
(C, xC) or (C, yC) depending on the direction along
which C is split.

If B is acyclic, it represents a task: the reward
associated with the rule is only received when the

Procedure 3 runtask(s,Q, π)
reward ← 0
while s ̸= end task do
a∗ ← argmaxa Q(s, a)
a← sample from πa∗(s, a) (Eq. 14)
Take action a observe s′, r
if s′ ∈ N 0 then

r+ = runtask (s′, Q, π)
s′ ← observe new state

end if
reward += r
Q(s, a)← α [r +maxa′ Q(s′, a′)] + (1− α)Q(s, a)
s← s′

end while
return reward

task is completed, namely when the branch rooted at
B(xB , yB , wB , hB) is fully derived. The reward’s value
equals the sum of the rewards collected during the
derivation of this branch and is stochastic; applying
twice the same rule might lead to two different re-
wards since these rewards depend on decisions taken
earlier during the completion of the task.

5.3.3 Optimization strategy
As summarized in Algorithm 2 and Procedure 3,
we use a Q-learning agent that iteratively segments
facades until converging to an optimal policy. In each
episode the agent sequentially builds the segmenta-
tion by selecting one rule (action) at a time based
on a local information (state). By applying a rule, it
may create a terminal symbol, a subtask or a cyclic
symbol. Then it receives a reward and reaches a new
state where it faces a new decision. The value function
is iteratively learned by Q-learning updates. After
convergence, reached after around 103 episodes, we
deterministically parse the facade by following the
greedy policy with respect to the estimate of Q∗(s, a).
By virtue of being deterministic, and using a policy
defined on aggregated states, the delivered parse
satisfies symmetry constraints. Moreover, despite the
large dimensionality of the original space of states and
actions, state aggregation allows us to compactly store
the action-value function in a few MBs of RAM.

A potential concern is about the optimality of the
parsing process in this modified setting. Intuitively
we can justify our scheme as follows: consider that
the high-level policy for facade splitting starts placing
floors more often at proper locations. This will result
in similar rewards when parsing floors at those loca-
tions and eventually lead also the local policy for floor
splitting closer to the optimal one. Similarly, if the
floor-parsing policy becomes correct, misplaced floors
will get low rewards, contrary to properly placed
ones, which will be properly split. This leads in turn
to an improvement of the high-level policy. There is
thus a mutual, EM-like, reinforcement of the correct

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

0 1000 2000 3000 4000 5000

episodes
40000

45000

50000

55000

60000

65000

70000

75000

Mean Reward

Mean Greedy Reward

Fig. 6. Convergence of the RL parsing algorithm; we plot
returns versus episodes. The trajectories of returns (red) and
greedy returns (blue) averaged over 1000 identical agents.
In pink is the region representing the standard deviation of
the returns. We can see that the fluctuations of the return
are decreasing with the iterations. The returns converge to a
fixed value.

high- and low- level policies, but as in all EM-based
schemes local minima can potentially occur.

5.4 Analysis of Convergence on Artificial Data
To verify the convergence of the Q-learning algorithm,
we consider the following test case: the input is a
simple binary white/black 2D facade with three floors
and four windows per floor that we want to parse
with a BSG that has two terminal symbols: wall and
window. On such an artificial image, we already know
the ground truth segmentation and therefore we use
the following pixel-wise merit function: m(x, y, c) is
equal to 1 if c corresponds to the ground truth at (x, y)
and 0 otherwise.

We run N = 1000 identical Q-learning agents for
T = 5000 episodes. The learning rates α and the
exploration rate ϵ are decreasing exponentially from 1
to 10−3. For each agent i and for each episode k we get
a return Γk

i , as well as a ‘greedy return’ Gk
i at episode

k. The latter represents what the agent can get while
greedily following the policy learned after k episodes.
For an individual agent i the trajectories Γk

i and Gk
i

are noisy. To remove the effects of noise we average
over multiple agents and obtain the curves µ(Γk) and
µ(Gk) in Fig. 6. We also show the evolution of the
standard deviation of the returns σ(Γk) by plotting
the curves µ(Γk)± 3σ(Γk).

We can see in Fig. 6 that the two curves are in
average increasing towards the same limit while the
parses become better with time. The convergence
towards the optimal parse depends on the number of
episodes, the learning rate and the exploration rate,
which are the only three parameters of the algorithm.
In all of our experiments we use a common set of
parameters, while in our experience performance was
robust to their changes.

6 ENHANCED PARSING
The proposed parsing algorithm is a direct applica-
tion of Q-learning. However, several problem-specific

0 1000 2000 3000 4000 5000
episode

45000

50000

55000

60000

65000

70000

75000

ǫ-greedy

Data Driven

Fig. 7. Speed-up with data-driven exploration; we plot re-
turns versus episodes.. The agents with a data-driven policy
converge in average faster towards the solution, that the ones
using a plain, ϵ-greedy policy. The curves are averaged over
1000 identical agents.

properties may be exploited to obtain faster and better
parses. In this section we present two techniques
that adapt the RL framework to enhance the parsing
algorithm: data-driven exploration and user-defined
constraints.

6.1 Data-Driven Exploration
Following the idea of Data-Driven Markov Chain
Monte-Carlo (DDMCMC) [20], we propose to drive
the rule selection process using bottom-up cues. The
idea is that the border between two semantic regions
should match the strong gradients along the split di-
rection. While splitting a labeled rectangle at position
x, we should give more credit to actions of parameter
w such that the image gradients at x+ w are strong.

Similarly to [21], we build two signals, representing
the cumulative gradients in both directions.

∀i ≤W, hX(i) =
H∑
j=1

||∇xGσ ∗ I(i, j)||, (19)

where Gσ is a Gaussian Kernel that smooths the
signal. We obtain hY in a similar way.

Assuming to be in state s = (c, x) with actions
A(s) = {a1, . . . , an} corresponding to parameters
w1, . . . , wn and with a∗ the greedy action, we define
the data-driven policy π(s, ai) as:

π(s, ai) = (1− ϵ)δ(ai, a
∗) + ϵ

ehX(x+wi)∑n
j=1 e

hX(x+wj)
. (20)

An equivalent vertical version can be obtained if s is
to be split along Y . We keep the property that the
data-driven policy tends to a greedy policy when ϵ
goes to zero, while keeping all probabilities π(s, a)
positive. Such a policy guides the exploration towards
interesting locations (namely, with strong gradient)
but does not compromise the convergence of the
algorithm.

Coming to experimental validation, Fig. 7 shows the
difference between data-driven and ϵ-greedy policies
on an artificial image such as the one used in Fig. 6.
Both experiments were conducted with the same set-
tings. We chose σ = 5. We observe that the blue curve

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

is always above the red one, which indicates that
data-driven exploration enables the agent to converge
faster towards the optimal solution.

Quantitatively, we measure on Fig. 7 the number
of iterations needed to reach 90% of the final re-
turn with and without data-driven exploration. Using
data-driven policy an agent reaches this level after 693
iterations in average, and after 1761 iterations with
an ϵ-greedy policy. The speed-up obtained on this
particular example is 2.5.

6.2 User-Defined Constraints
In real-world applications the user may require some
interaction with the parsing algorithm, for instance by
manually drawing a labeled rectangle (c, x, y, w, h) on
the image; such a constraint can be easily integrated
in the RL framework.

In particular we increase the rewards associated
with decisions that create (c, x, y, w, h), ‘priming’ the
agent to do so. For example, if the pixel-wise merit
function is always between 0 and 1, we decide to give
a pixel-wise reward of 2 when the constraint is met.

These constraints are not hard since it is possible
that the agent finds a more profitable parse which
violates the constraint. In practice these constraints
are typically satisfied to a substantial extent, and are
easy to define and integrate with real data.

7 MERIT FUNCTIONS

The merit functions are defined on the terminals
and are involved in the computation of the rewards.
In Sec. 5, we have considered the pixel-wise merit
m(x, y, c) as an input of the method without explain-
ing how it can be obtained. One strength of the
proposed approach is to support any type of merit
functions.

As we want to exploit both cases where training
data are available and also cases where only the gram-
mar is available we consider below three different
ways to create merit functions.

If training data is available in the form of seg-
mentation annotations we can obtain supervised merit
functions from the posterior probabilities of multi-class
classifiers:

m(x, y, c) = p(c|x, y, I), (21)

In particular we have considered both Random Forest
(RF) and Gaussian Mixture Model (GMM) classifiers.

The random forest merit uses the classifier intro-
duced by Breiman [22]. We use the classifiers of [4],
where the RF is made of 10 trees of depth 12 and as
feature vectors RGB patches of size 13× 13.

The Gaussian Mixture Models merit is based on
the RGB values of individual pixels selected by the
user through brush strokes on the image for each
terminal symbol of the BSG. As in [23], we fit a GMM
per class assuming the independence of the pixels.

We give an example of GMM merit functions for four
different labels in Fig. 1; we note that even though the
merits are noisy locally, the regularity bias introduced
by the model results in a good segmentation.

Both RF and GMM merits are making use of some
training examples and therefore require some amount
of user interaction. To accommodate also the common
case where training data is not available we consider
the learning of unsupervised merit functions. In partic-
ular for simpler cases where the BSG has only two
terminal windows, wall and window, we can separate
the two classes based on the heuristic introduced
by [24]: the hue value distinguishes the walls from
the windows. We then build a merit m(x, y, c) by
applying a K-Means on the hue values. The bigger
cluster is considered to be the walls and the other
one the windows. The merit m(x, y, c) is the relative
distance of the hue value of pixel (x, y) to both cluster
centroids.

8 EXPERIMENTAL VALIDATION

We validate our parsing framework quantitatively
and qualitatively on existing and new benchmarks.
For the sake of reproducibility, we make our parsing
software available online:
vision.mas.ecp.fr/Personnel/teboul/grapesPage/

8.1 Quantitative Validation
8.1.1 Facades Benchmark [4]
To measure the performance of the parsing algorithm,
we run it on the facades benchmark proposed in [4]
and compare to the results obtained in [4].

For the reported results we use a Randomized For-
est classifier made of 10 trees of depth 12, and using
39-Dimensional features (RGB patches of size 13). The
classifier is trained on 20 images and its posterior
probabilities are used as merit functions. Besides, we
run the RL parsing algorithm on the 10 images for
3000 episodes using the complex Haussmannian BSG
made of 281 rules. On average, the agent has to take
around 80 decisions per episode.

As can be seen from Fig. 8, our method gives typ-
ically better results than [4] on the same benchmark;
however the results of our method are delivered in
a fraction of the time. In particular [4] needs around
106 generations and about 10 minutes to converge,
whereas the RL-based approached only needs 2000
iterations and about 30 seconds to converge, while at
the same time avoiding local minima more effectively.

8.1.2 Monge Benchmark
We extend the previous benchmark from 10 to 84 fa-
cades, to increase the variety of buildings to parse. To
make the results commensurate we use the same RF
classifier as the one used in the previous experiment.

We call pixel-wise labeling the results obtained
while labeling each pixel independently with the most

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

0
+1
−9

+13
+6
0

+2

81 11 3 0 5 0 0
5 84 7 1 1 0 2
10 26 63 0 0 0 1
0 2 0 84 0 0 14
10 4 0 0 86 0 0
2 0 0 0 4 94 0
0 1 0 2 0 0 97

︸ ︷︷ ︸

RL Parsing Benchmark [4]

27 15 15 13 19 4 8
5 63 11 9 4 2 7
11 17 34 13 12 2 11
2 2 1 81 3 0 10
10 6 11 4 54 10 4
4 3 3 1 14 75 1
6 12 10 42 7 0 22

︸ ︷︷ ︸
Pixel-wise Monge Benchmark

68 23 4 0 4 2 0
3 87 7 0 1 0 1
9 24 64 0 1 0 1
0 1 0 53 0 0 46
6 3 0 0 83 8 0
1 0 0 0 3 96 0
0 6 1 6 0 0 88

︸ ︷︷ ︸
RL Parsing Monge Benchmark

window
wall

balcony
door
roof
sky
shop

Fig. 8. Quantitative results: We report confusion matrixes on the Facades Benchmark of [3] and the Monge Benchmark,
which is an extended version of the former. The left table compares to the results in [3]; green indicates an increase in the
on-diagonal element and red a decrease. We observe that on average performance improves. The middle table reports the
performance of the pixel-wise labeling baseline on the Monge benchmark, while the right table reports the performance of
our algorithm on the same benchmark.

probable label according to the RF classifier only. We
use it as a baseline to compare to our method on this
new benchmark.

For each image we repeat five times the Q-learning
algorithm, and use 5000 episodes each time. We use
data-driven exploration and the Randomized Forest-
based rewards. We keep the parse that maximizes the
global return and build a confusion matrix for the
whole dataset.

First we observe on the diagonal of the third matrix
a decrease in the detection performance of windows,
balconies and doors, compared to the small dataset of
[4] (see diagonal of the first and third matrices).This
can be attributed to the high appearance variability
and the small element size: even when the method
finds the windows, missing some pixels can result in
a substantial drop in the detection rate.

Second we observe that the parsing algorithm
(third matrix) outperforms the pixel-wise segmenta-
tion based on the Randomized Forest only (second
matrix), except for the specific case of doors. From
the last line of the pixel-wise confusion matrix we
notice that shops are more frequently labeled as doors
rather than shops. Note that this only happens for
doors where symmetry/state aggregation cannot im-
prove the decision by transferring information across
multiple floors.

In conclusion, the parsing algorithm performs quite
well even when the data term (reward) is poorly
informative and noisy as it is the case here. The lack of
quality in the data term is compensated by the context
introduced by the grammar and a method to parse it
properly.

8.2 Qualitative Validation
The proposed quantitative validation is restricted the
Haussmann BSG and the Randomized Forest reward.
In order to demonstrate the generality of our al-
gorithm we test it on different BSGs, rewards, and
topologies, as well as challenging viewing conditions.

8.2.1 Other Grammars and Rewards
In Fig. 10 we give an example of parsing obtained
with a grammar describing a class of binary segmen-

Fig. 9. Parsing Parisian facades. The segmentation of the
roof is wrong since the grammars forces it to be the same as
the one of the floors. In spite of some geometrical mistakes,
the structure of the building is properly parsed.

Fig. 10. Parsing facades with a binary BSG. On the left the
original image, on the right the optimal parse.

tations. Fig. 11 shows examples of parsing of a more
complex grammar that we call the 4-color BSG; this
grammar involves four kinds of terminal elements,
combined with GMM rewards. Even if the obtained
results are inaccurate, they can provide excellent ini-
tializations for subsequent segmentations.

8.2.2 Other Facade Topologies
One of the main advantages of our algorithm is
that it does not require us to know the number of
architectural elements. Our algorithm takes as input
a grammar that restricts segmentations to be axis-
aligned but allows for an arbitrary number of parts. In
Fig. 12 we apply our parsing method to skyscrapers.
The difficulty of these examples lies in the number of
decisions the agent must take to perform a segmen-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 11. Parsing facades with a 4-color BSG. From left to
right: original image, user’s brush strokes to train a GMM
classifier, pixel-wise segmentation using the GMMs, optimal
parse with our algorithm.

Fig. 12. Despite the large and unknown number of floors,
our algorithm accurately parses skyscraper images.

tation, since the problem’s complexity scales with the
number of possible decisions. To further illustrate the
flexibility of our method, in the rightmost example
we parse the input facade with a BSG that enforces
an alternation of two kinds of floors.

8.2.3 Robustness to Viewing Conditions

An important property of the proposed framework
is directly inherited from the procedural modeling
and the state aggregation: since all the floors of a
facade as treated as one through a BSG, our approach
is robust to occlusions and lighting conditions, both
of which result in corrupted merit functions. Our
method leverages upon the symmetry constraint, and
transfers segmentation information across structures
with uncorrupted merit functions, for instance floors
above/below a corrupt one. In Fig. 13 we provide
examples of occlusions and lightings that are correctly
handled by the proposed framework. We observe
that the algorithm ‘hallucinates’ windows behind the
occlusions, due to the model’s bias for symmetry. One
can argue that this may be too hard a constraint in
general; but in particular for buildings it is common
enough to be worth ‘hard-wiring’ into a model. A
simple alternative to explicitly accommodate occlu-
sions in our model would be to introduce an occlusion
’class’, as e.g. in [25], and then penalize its occur-
rences, so that occlusions are introduced wherever the
class suggested by the symmetry cue can no longer
explain the data; we intend to explore this option in
future work.

Fig. 13. Robustness to viewing conditions and occlusions.

Fig. 14. Image-based procedural modeling of buildings: we
turn the estimated 2D rule sequence into a 3D sequence, and
manually add the depth variables. The input image is used as
a texture map for the grammar-generated 3D building model.

8.3 Image-based Modeling

The procedural modeling framework adopted in this
paper makes it easy to bridge the gap between 2D
and 3D: after parsing we turn the 2D grammar rules
into 3D ones by adding an arbitrary realistic depth to
each labeled rectangle.

In Fig. 14 we apply this approach on some Hauss-
mannian buildings. Furthermore the procedural mod-
eling framework also enables us to decorate the final
models by adding primitives consistently with the
ones found by parsing. Cornices, or balcony supports
are difficult to detect but their positions and sizes are
closely related to the ones of balconies and windows.

9 RELATED WORK

Even though image parsing has been of interest since
the early days of computer vision [26], flat, CRF- or
MRF-based approaches [27], [28], [29] have prevailed
in the image labeling task over the last decade. Re-
cently several works have investigated the use of hier-
archical models for scene [30], [10] and object parsing
[20], [31], but to the best of our understanding none of
these are directly applicable to facade parsing, where
a large number of unknown structuring elements is
involved.

Coming to works that address facade parsing,
bottom-up approaches rely on low-level processing
for lattice [32], [33], [34] or windows detection [21],
[35] or on repetitions and symmetry of keypoints
[36], [37] and regions [38], [39], [40]. In order to re-
cover from front-end failures certain approaches have
also proposed to put users in the parsing loop [41].
Even though our method can exploit these ideas, e.g.
through data-driven exploration, the main advantage

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

of our work consists in making a model-based ap-
proach practical.

Grammar-based methods have been recently pro-
posed to parse facades: [42], [43] embed single gram-
mar rules in an MRF, but do not employ a procedural
grammar, which allows for increased flexibility. Some
other methods cope with procedural 3D reconstruc-
tion from multiple views [44]. The works which use
procedural grammars, and are closest in spirit to our
work are [11], [12], [4]. The first one introduces the
facade parsing problem with a shape grammar. The
rjMCMC optimization iteratively modifies the current
parse and evaluates its quality based on low-level
image cues. Working in a similar vein [12] introduce
an MDL criterion, while [4] use simpler optimization
but a more sophisticated merit term obtained through
supervised learning. Our method retains the model-
based constraints on the facade segmentation of [11],
[12], and the discriminatively trained merit of [4], but
replaces the time-consuming rjMCMC of [11] and the
prone to local minima approach of [12] with a robust
and efficient optimization approach based on RL.

10 CONCLUSION

In this paper we propose an optimization-based
framework for parsing rectified images of facades.
We first define a subclass of shape grammars we call
Binary Split Grammars that are well suited to describe
various facade layouts. Then we introduce a new
parsing algorithm based on Reinforcement Learning
principles that formulates the parsing problem as a
hierarchical decision process. This algorithm empir-
ically outperforms existing methods both in terms
of segmentation quality and speed. It supports any
kind of BSGs, does not make any assumptions on
the number of elements of the facade, and by virtue
of being model-based delivers solutions which are
robust to occlusions or specific lighting conditions. In
addition, we have introduced a benchmark of Parisian
facades, which was used to compare our algorithm to
existing approaches. Our results have demonstrated
that we achieve state-of-the-art results in a fraction of
the time required by other methods. In future work
we plan first to transpose this 2D parsing method to
3D parsing from multiple views that may require to
integrate techniques developed for 3D stereo recon-
struction in our problem.

ACKNOWLEDGMENTS

O. T., L. S and P. K. were supported by the Microsoft
Research Cambridge PhD scholarship program; I.
K. was supported by Project ANR-10-JCJC-0205; we
thank the Reviewers for their constructive feedback.

REFERENCES

[1] P. Wonka, M. Wimmer, F. X. Sillion, and W. Ribarsky, “Instant
architecture,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
669–677, 2003.

[2] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,
“Procedural modeling of buildings,” ACM Transactions on
Graphics, vol. 25, no. 3, p. 614, 2006.

[3] M. I. Schlesinger and V. Hlavác, Ten Lectures on Statistical
and Structural Pattern Recognition (Computational Imaging and
Vision). Springer, 2002.

[4] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios, “Seg-
mentation of building facades using procedural shape priors,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). San Francisco, USA: IEEE, 2010, pp. 3105–3112.

[5] G. Stiny and J. Gips, “Shape Grammars and the Generative
Specification of Painting and Sculpture,” in Information Pro-
cessing 71, C. V. Freiman, Ed., vol. 71. North-Holland, 1972,
pp. 1460–1465.

[6] G. Stiny and W. J. Mitchell, “The Palladian grammar,” Envi-
ronment and Planning B: Planning and Design, vol. 5, pp. 5–18,
1978.

[7] S. Havemann, Generative mesh modeling, PhD Dissertation.
Braunschweig, 2005.

[8] S. T. Teoh, “Generalized Descriptions for the Procedural Mod-
eling of Ancient East Asian Buildings,” Computational Aesthet-
ics in Graphics, Visualization, and Imaging, 2009.

[9] E. Whiting, J. Ochsendorf, and F. Durand, “Procedural mod-
eling of structurally-sound masonry buildings,” ACM Transac-
tions on Graphics, vol. 28, no. 5, p. 1, Dec. 2009.

[10] S.-C. Zhu and D. Mumford, “A stochastic grammar of im-
ages,” Foundations and Trends in Computer Graphics and Vision,
vol. 2, no. 4, pp. 259–362, 2006.

[11] F. Alegre and F. Dellaert, “A probabilistic approach to the
semantic interpretation of building facades,” in International
Workshop on Vision Techniques Applied to the Rehabilitation of City
Centres, 2004.

[12] N. Ripperda and C. Brenner, “Application of a formal gram-
mar to facade reconstruction in semiautomatic and automatic
environments,” in Proceedings of the 12 th AGILE Conference on
GIScience, Hanover, Germany, 2009, pp. 1–12.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press, 1998.

[14] S. Thrun, “The role of exploration in reinforcement learning,”
in Handbook for Intelligent Control: Neural, Fuzzy and Adaptive
Approaches, D. White and e. D.A. Sofge, Eds. Van Nostrand
Reinhold, Florence, 1992.

[15] C. Watkins, “Learning from Delayed Rewards,” Ph.D. disser-
tation, Cambridge University, Cambridge, England, 1989.

[16] A. Barto and S. Mahadevan, “Recent advances in hierarchi-
cal reinforcement learning,” Discrete Event Dynamic Systems,
vol. 13, no. 4, pp. 341–379, 2003.

[17] T. G. Dietterich, “Hierarchical reinforcement learning with
MAXQ,” Journal of Artificial Intelligence Research, vol. 13, 2000.

[18] B. Marthi, S. J. Russell, and J. Wolfe, “Angelic semantics for
high-level actions,” in ICAPS, 2007.

[19] G. Neu and C. Szepesvári, “Training parsers by inverse rein-
forcement learning,” Machine Learning, 2009.

[20] S.-C. Zhu, R. Zhang, and Z. W. Tu, “Integrating Top-
Down/Bottom-Up for Object Recognition by Data-Driven
Markov Chain Monte Carlo,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2000.

[21] S. C. Lee and R. Nevatia, “Extraction and Integration of
Window in a 3D Building Model from Ground View images,”
in IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, 2004.

[22] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[23] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr, “Interac-
tive image segmentation using an adaptative GMMRF model,”
in European Conference on Computer Vision (ECCV), 2004.

[24] C. Liu and A. Gagalowicz, “Image-based Modeling of Hauss-
mannian Facades,” International Journal of Virtual Reality, vol. 9,
no. 1, pp. 13–18, 2010.

[25] R. Tylecek and R. Sára, “Modeling symmetries for stochastic
structural recognition,” in ICCV Workshops, 2011.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[26] Y. Ohta, T. Kanade, and T. Sakai, “An analysis system for
scenes containing objects with substructures,” in International
Joint Conference on Pattern Recognitions, vol. 1, 1978.

[27] A. C. Berg, F. Grabler, and J. Malik, “Parsing Images of Ar-
chitectural Scenes,” IEEE International Conference on Computer
Vision (ICCV), pp. 1–8, 2007.

[28] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost
for Image Understanding: Multi-Class Object Recognition and
Segmentation by Jointly Modeling Texture, Layout, and Con-
text,” International Journal of Computer Vision, vol. 81, no. 1, pp.
2–23, Dec. 2007.

[29] J. Tighe and S. Lazebnik, “SuperParsing: Scalable Nonpara-
metric Image Parsing with Superpixels,” in European Confer-
ence on Computer Vision (ECCV). Heraklio, Greece: Springer,
2010, pp. 352–365.

[30] Z. W. Tu and S.-C. Zhu, “Image segmentation by data-driven
Markov chain Monte Carlo,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 5, 2002.

[31] Y. Chen, A. Yuille, and L. L. Zhu, “Unsupervised Learning
of a Probabilistic Grammar for Object Detection and Parsing
Unsupervised Learning of a Probabilistic Grammar for Object
Detection and Parsing,” Science And Technology, 2007.

[32] T. Leung and J. Malik, “Detecting, localizing and grouping
repeated scene elements from an image,” European Conference
on Computer Vision (ECCV), no. April, pp. 546–555, 1996.

[33] Y. Liu, Y. Tsin, and W. Lin, “The promise and perils of
near-regular texture,” International Journal of Computer Vision,
vol. 62, no. 1, pp. 145–159, 2005.

[34] B. Weber, P. Müller, P. Wonka, and M. Gross, “Interactive
Geometric Simulation of 4D Cities,” Computer Graphics Forum,
vol. 28, no. 2, pp. 481–492, 2009.

[35] S. Reznik and H. Mayer, “Implicit Shape Models, Model
Selection, and Plane Sweeping for 3D Facade Interpretation,”
in Photogrammetric Image Analysis (PIA), 2007, p. 173.

[36] P. Musialski, P. Wonka, M. Recheis, S. Maierhofer, and W. Pur-
gathofer, “Symmetry-based facade repair,” in Vision, Modeling,
and Visualization Workshop (VMV). Citeseer, 2009.

[37] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu,
“Translation-Symmetry-based Perceptual Grouping with Ap-
plications to Urban Scenes,” in Asian Conference on Computer
Vision, Queenstown, New Zealand, 2010.

[38] P. Koutsourakis, L. Simon, O. Teboul, G. Tziritas, and N. Para-
gios, “Single View Reconstruction Using Shape Grammars
for Urban Environments,” in IEEE International Conference on
Computer Vision (ICCV), 2009.

[39] P. Müller, G. Zeng, P. Wonka, and L. Van Gool, “Image-
based procedural modeling of facades,” ACM Transactions on
Graphics, vol. 26, no. 3, p. 85, 2007.

[40] C.-H. Shen, S.-S. Huang, H. Fu, and S.-M. Hu, “Adaptive
partitioning of urban facades,” ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH ASIA 2011, vol. 30, no. 6, 2011.

[41] P. Musialski, M. Wimmer, and P. Wonka, “Interactive
Coherence-Based Façade Modeling,” Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2012), no. 2, 2012.

[42] J. Cech and R. Sara, “Windowpane detection based on max-
imum aposteriori probability labeling,” in International Work-
shop on Combinatorial Image Analysis, Buffalo, NY, USA, 2008.

[43] ——, “Languages for constrained binary segmentation based
on maximum a posteriori probability labeling,” International
Journal of Imaging Systems and Technology, vol. 19, no. 2, pp.
69–79, Jun. 2009.

[44] L. Simon, O. Teboul, P. Koutsourakis, L. Van Gool, and
N. Paragios, “Parameter-free/Pareto-driven Procedural 3D Re-
construction of Buildings from Ground-Level Sequences,” in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Providence, USA: IEEE, 2012.

Olivier Teboul graduated from Ecole Centrale Paris in 2007 in Ap-
plied Mathematics, received a M.Sc from Ecole Normale Superieur
de Cachan in 2007 and a Ph.D from Ecole Centrale Paris in 2011 in
Applied Mathematics. He is software engineer at Google Brazil since
2011.

Iasonas Kokkinos (S.M. 2002, M. 2006) obtained the Diploma
of Engineering in 2001 and the Ph.D. Degree in 2006, both from
the School of Electrical and Computer Engineering of the National
Technical University of Athens in Greece. In 2006 he joined the
Center for Image and Vision Sciences in the University of California
at Los Angeles as a postdoctoral scholar. As of 2008 he is an Assis-
tant Professor at the Department of Applied Mathematics of Ecole
Centrale Paris and is also affiliated with the Galen group of INRIA-
Saclay in Paris. His research interests are in the broader areas of
computer vision, signal processing and machine learning, while he
has worked on nonlinear speech processing, biologically motivated
vision, texture analysis and image segmentation. His currently re-
search activity is focused on efficient algorithms for object detection,
shape-based object recognition and learning-based approaches to
feature detection. He has been awarded a young researcher grant
by the French National Research Agency, and serves regularly as a
reviewer for all major computer vision conferences and journals; he
has served as an area chair for CVPR 2012, co-organized POCV
2012 and is an associate editor for the Image and Vision Computing
Journal.

Loic Simon received a B.Sc from Ecole Normale Superieure de
Cachan (ENS Cachan) in Mathematics in 2004, a B.Sc from ENS
de Cachan in Physics in 2004, his aggregation in Mathematics in
2006 a M.Sc in applied Mathematics in 2007. He received a Ph.D
from Ecole Centrale Paris in 2011 in Applied Mathematics. He is a
post-doc in ENS Cachan since 2011.

Panagiotis Koutsourakis received a M.Sc from University of Crete
in 2006.

Nikos Paragios is professor of Applied Mathematics and Com-
puter Science, director of the Center for Visual Computing of Ecole
Centrale de Paris and Ecole des Ponts - ParisTech, member of
the Laboratoire d’informatique Gaspard-Monge and scientific leader
of GALEN group of Ecole Centrale de Paris/INRIA Saclay, Ile-de-
France. Professor Paragios is an IEEE Fellow, has co-edited three
books, published more than two hundred papers in the most pres-
tigious journals and conferences of medical imaging and computer
vision, and holds twenty one US patents. He has served/serves as
an associate/area editor/member of the editorial board for the IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
the Computer Vision and Image Understanding Journal (CVIU), the
International Journal of Computer Vision (IJCV), the Medical Image
Analysis Journal (MedIA), the Journal of Mathematical Imaging and
Vision (JMIV), the Imaging and Vision Computing Journal (IVC),
the Machine Vision and Applications (MVA) Journal and the SIAM
Journal in Imaging Sciences (SIIMS) and regularly serves as an area
chair for the top conferences of medical imaging and computer vision
conferences (ICCV, CVPR, ECCV, MICCAI,...). Professor Paragios
is member of the scientific council of SAFRAN conglomerate. His
research interests are in medical imaging and computer vision.

