
Signal Processing

Lab 1

Ahmed Besbes Panagiotis Koutsourakis Loic Simon

Chaohui Wang

November 12, 2008

1 Introduction to Matlab - Basics

1.1 Matrices and Arrays

This �rst lab gives some basics about Matlab programming. We will useOctave
as an alternative to Matlab because it is an open source and free software,
and because it has almost the same syntax as Matlab. Some of the missing
functions in Octave will be provided to you.

� Matlab uses the character % to write comments:
% this is a Matlab comment

� Ending an instruction with ; prevents from displaying the result in the
command window:
a=1 % The result is displayed

a=1; % The result is not displayed

� In Matlab, the data is basically stored in n-dimensional arrays:
a = 1; a = 2+1i; % real and complex numbers

b = [1 2 3 4]; % row vector

c = [1; 2; 3; 4]; % column vector

b==c'; % true: b is the transpose of c

d = 1:7; % here one has d=[1 2 3 4 5 6 7]

d = 1:2:7; % here one has d=[1 3 5 7]

d = linspace(1,7,4); % here one has d=[1 3 5 7] too

E = [1 2;3 4]; % a 2x2 matrix

� The acess to one entry of an array, or the selection of a sub-array is done
by indexing:
size(d) % display the size

d(1) % display the first entry : indexing starts at 1

d(1:2) % display the sub-array containing entries 1 and 2

E(:); % flattens a matrix into a column vector

� Particularly, the subscripting can be logical:
d==5 % a boolean array of the same size of d ...

d(d==5) = 3; % replaces the values 5 in d by 3

1

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 Inf 1.4 2.2 1.6 1.8];

x = x(isfinite(x)) %get rid of the non finite elements of x

� Matlab provides functions to create pre-de�ned arrays:
% identity, 1 and random matrices

A = eye(4,4);

B = ones(4,4);

C = rand(4,4);

% transpose

c = b';

� Matlab provides many tools for matrix computing and manipulation. For
instance, the multiplication operator * is used for matrix multiplication.
The pointwise multiplication, i.e. multiplication of the corresponding en-
tries of the matrices is obtained using the operator .*. Note thatMatlab

recognizes either j or i as the square root of −1, unless you have de�ned
variables j or i with di�erent values:
% note the difference

D = C*A % Matrix multiplication

D = C.*A % Pointwise multiplication

% You can apply functions to each entry of a matrix

E = A./C; % division

E = sin(A); % sinus is applied to each entry

E = abs(A + 1i*C); % modulus of each entry

� You can modify matrices and arrays in various ways:
b = sort(b); % sort values

b = b .* (b>2); % set to zeros (threshold) the values below 2

b(3) = []; % suppress the 3rd entry of a vector

B = [b; b]; % concatenation: create a matrix of size 2x4

c = B(:,2); % to access 2nd column

� It is possible to access directly the last entry of a vector using the keyword
end in Matlab:
b(end-2:end) = 1; % to access the last entries

b = b(end:-1:1); % reverse a vector

� Matlab provides many other useful functions as:
sum(B(:)); % sum all values in B

min(B(:)); % the smallest value in B

max(B(:)); % the biggest value in B

� To format and display text:
disp('Hello'); % display a text

x = 1.23456;

disp(sprintf('Value of x=%.2f',x)); % print a values with 2 digits

1.2 Graphics

� To create a plot in Matlab, run for instance:
x = 0:pi/100:2*pi;

y = cos(x);

plot(x,y)

2

� You can add labels to the axes and a title to your plot:
xlabel('x = 0:2\pi')

ylabel('Cosine of x')

title('Plot of the Cosine Function','FontSize',12)

� You can also include several plots in the same �gure:
x = 0:pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

y3 = y1+y2;

plot(x,y1,x,y2,x,y3)

� Adding a legend is done through:
legend('sin(x)','cos(x)','sin(x)+cos(x)')

� Matlab enables also to plot complex data. When Z is a complex array,
plot(Z) is equivalent to plot(real(Z),imag(Z)). An example below:
t = 0:pi/10:2*pi;

plot(exp(i*t),'-o')

axis equal

� It is also possible in Matlab to add a plot to an existing graph using the
hold function:
[x,y,z] = peaks; % 3D peaks data

pcolor(x,y,z) % Pseudocolor plot

shading interp %setting the color properties

hold on % enables to add a plot

contour(x,y,z,20,'k') % adding the isolines to the plot

hold off % adding plot ends

� It is also possible to display multiple plots in the same �gure:
x = 0:pi/100:2*pi;

y1 = sin(x);

y2 = cos(x);

subplot(2,2,1); plot(x,y1) % top left

subplot(2,2,4); plot(x,y2) % bottom right

� The following functions provide other ways to display plots:
t = [0.1 0.2 0.3 0.4];

x = [1.0 8.0 4.5 9.7];

plot(t,x)

figure, stem(t,x)

figure, stairs(t,x)

fs = 1000;

ts = 0:1/fs:2;

f = 250 + 240*sin(2*pi*ts);

x = sin(2*pi*f.*ts);

strips(x,0.25,fs) % the file strips.m is needed

wavwrite(x',fs,'wave.wav') % writes a .wav audio file.

% the first argument must be a column vector.

3

1.3 Programming

� When you invoke a script, Matlab simply executes the commands found
in the �le. Scripts can operate on existing data in the workspace, or they
can create new data on which to operate. Although scripts do not return
output arguments, any variables that they create remain in the workspace,
to be used in subsequent computations. In addition, scripts can produce
graphical output using functions like plot.

� Functions are M-�les that can accept input arguments and return output
arguments. The names of the M-�le and of the function should be the
same. Functions operate on variables within their own workspace, separate
from the workspace you access at the Matlab command prompt. The
syntax is as follows:
function [output1,...,outputN] = f(input1,...,inputN)

% This is a comment about the function

instructions & tratments ...

output1=...;

outputN=...;

� Conditional control can be performed using the following syntax:
if condition 1

treatment 1

elseif condition i

treatment i

else

treatment n

end

� ... or using the following:
switch expression

case value 1

treatment 1

case value i

treatment i

otherwise

treatment n

end

� Loop control can be performed using the following syntax:
for n = 1:N

treatments ...

end

� ... or using the following:
while condition

treatments...

end

� Vectorization: one way to make your Matlab programs run faster is to
vectorize the algorithms you use in constructing the programs. Example:
instead of:

4

x = 0.01;

for k = 1:1001

y(k) = log10(x);

x = x + 0.01;

end

use:
x = 0.01:0.01:10;

y = log10(x);

� Preallocation: you can make your for loops go faster by preallocating any
vectors or arrays in which output results are stored:
A = zeros(10000,1); % Preallocating speeds up the algorithm

for n = 1:10000

A(n) = n;

end

You can try the code with an without preallocating, and notice its speed
by adding the commands tic at the beginning and toc at the end.

2 Exercises - Dicrete Fourier Transform

You will be provided di�erent .wav audio �les that you can use to test your
code. Matlab function wavread and wavwrite enable you to read and write
audio �les from your disk. For more details, refer to the documentation or use
the help function:
help wavread % how is wavread used ?

1. Write a function X=DiscreteFourier(x) that computes the DFT trans-
form X = DFT (x) of a discrete signal x. You may �rst implement it
using loops, but try then to vectorize your code, and think the function
in terms of matrix computing.

2. Let us consider now signals that have N = 2p points. For such signals,
Cooley and Tuckey introduced �rst in 1965 the Fast Fourier Transform
(FFT) algorithm. This recursive algorithm decomposes the problem into
two FFTs of two signals of dimension 2p−1. The kth Fourier coe�cient of
x is :

X(k) =
N−1∑
n=0

x(n).Wnk , (1)

where W = exp(− 2πj
N). The previous equation 1 can be written as:

X(k) =
N/2−1∑

n=0

x(2n).W 2nk +
N/2−1∑

n=0

x(2n + 1).W (2n+1)k (2)

=
N/2−1∑

n=0

x(2n).W 2nk + W k.

N/2−1∑
n=0

x(2n + 1).W 2nk

 . (3)

5

Thus, ∀k ∈ 0, . . . , N/2− 1:

X(k) = T 0
k + W k.T 1

k (4)

X(N/2 + k) = T 0
k −W k.T 1

k , (5)

with T i
k =

∑N/2−1
n=0 x(2n+i).W 2nk being the FFT of signals of 2p−1 points.

Write a function X=FastFourier(x) that implements the previous algo-
rithm. Test and compare the speed of the two functions to the pre-built
fft Matlab function (note that ifft is the Inverse Fast Fourier Trans-
form). You can use for this comparison some elementary discrete-time
signals like:

� the unit sample, or unit impulse:

δ(n) =

{
1, for n = 0
0, for n 6= 0

(6)

� the unit step:

u(n) =

{
1, for n ≥ 0
0, for n < 0

(7)

� the unit ramp:

ur(n) =

{
n, for n ≥ 0
0, for n < 0

(8)

� the unit square:

ΠN (n) =

{
1, for |n| ≤ N

0, for |n| > N
(9)

3. You are given two .wav �les top.wav and paint_ball.wav. By performing
manipulations in the spectral domain, produce:

(a) A �le that contains the �ball paint� sound.

(b) A �le that contains the �pot� sound.

(c) A �le that contains the �paint ball� sound, vanishing with reverber-
ation.

6

	Introduction to Matlab - Basics
	Matrices and Arrays
	Graphics
	Programming

	Exercises - Dicrete Fourier Transform

