
TP1: Active Shape Models

Loic Simon Chaohui Wang Panagiotis Koutsourakis

7 Mai 2007

1 Programming using the CImg library

The CImg library is an open source C++ toolkit for image processing (http:
//cimg.sourceforge.net/index.shtml). Due to its usefulness and simplicity,
we use it throughout our lab exercises. The goal of this exercise is to learn how
to use the CImg library, especially the CImg class, by realizing several tasks.

You first download all the necessary files from http://www.mas.ecp.fr/
vision/Personnel/juan/teaching/computer-vision/.

1.1 “Hello, Lena”

In this part, based on the CImg library and the test image “lena.png”, we
will accomplish the sub-tasks as follows:

1. Construct an CImg<double> object which reads the image from the file
“lena.png” and display the image of Lena. Try to use the methods of both
the CImg class and the CImgDisplay class to display Lena.

2. Get and show the size (height and width) of the image using the method
of CImg<double> class.

3. Display the R (Red) component of the image (hint: channel or get_channel).

4. Compute the gradient of the R component of the image along the x di-
rection and display the result. Try to compute the gradient along the y
direction if you have time.

1.2 National flag of France

Now,we will create an image representing the national flag of France.

1. Construct an CImg<unsigned char> object which contains a color image
of size 600× 400.

2. Fill the three channels (R, G, B) of the image by the colors representing
the flag of France (blue(0,0,255), white(255,255,255) and red(255,0,0)).

3. Display the image and save it with format png, jpg or bmp in the hard
disk.

1

http://cimg.sourceforge.net/index.shtml
http://cimg.sourceforge.net/index.shtml
http://www.mas.ecp.fr/vision/Personnel/juan/teaching/computer-vision/
http://www.mas.ecp.fr/vision/Personnel/juan/teaching/computer-vision/


2 Snake

In this section, we first review the theory on snake. And then we should do
some exercises concerning the implementation of this algorithm.

2.1 continuous formulation

Here, we present the Kass’ model, which is a common model of snake. In
this model, a snake v is a parametric curve :

v : [0, 1] → R2

s → v(s) = (x(s), y(s)) (1)

Lets define ẋ ≡ dx(s)
ds ẍ ≡ d2x(s)

ds2 and the same in y direction. Next, we
express a smooth closure condition on the contour:

x(0) = x(1), ẋ(0) = ẋ(1), ẍ(0) = ẍ(1)

.
Finally, we define the energy of the snake as a two terms sum:

Etotal(v) = Eint(v) + Eext(v) (2)

The first term is defined as follows, which ensures that a snake with a low
energy is regular (low curvature):

Eint(v) =
∫ 1

0

welast
1
2
(ẋ(s)2 + ẏ(s)2) + wstiff

1
2
(ẍ(s)2 + ÿ(s)2)ds (3)

The external term penalizes snakes placed in uniform areas of the input
image, and is defined as:

Eext(v) = wext

∫ 1

0

P (x(s), y(s))ds (4)

In our case, P should have low value near the contour in the image, then
can be as:

P (x, y) =
1

1 + a‖∇(Gσ ∗ I)(x, y)‖p
+ ε (5)

where ∗ stands for convolution and Gσ is a centered Gaussian with σ as standard
deviation.

We’re looking for the snake which minimizes the global energy:

vopt = arg min
v

Etotal(v) (6)

2



2.2 Discrete formulation

To implement the snake algorithm we need a discrete formulation. A simple
method is provided below.

First we discretize the curve representation by assuming that a curve is
determined by Np control points:

(xi, yi) = (x(hi), y(hi)) ∀i ∈ {0, Np − 1}

Then we take the simplest discretization of the parameterization si = hi and
use a finite differences scheme to evaluate the derivative, we get:

Eint(v) = h

Np∑
i=0

[welast
1

2h2
((xi+1 − xi)2 + (yi+1 − yi)2)

+ wstiff
1

2h4
((xi−1 − 2xi + xi+1)2 + (yi−1 − 2yi + yi+1)2)]

(7)

and,

Eext(v) = wexth

Np∑
i=0

P (xi, yi) (8)

2.3 Minimization

We can use an iterative scheme to optimize the energy: gradient descent.

vt+1 = vt − γ∇vEtotal(vt) (9)

3 Exercices

3.1 External energy

Complete the code of the Snake::computeP() function in snake.cpp.

3.2 Optimization

Complete the Snake::evolve() function in snake.cpp.

3.3 Test

Test the algorithm against rectangle.png. Comment the result.

3



3.4 Internal versus External energy

Test the algorithm with different values for the respective weight of the
internal and external energies (to do so play with the three global variables
wElas, wStiff and wExt defined at the top of snake.cpp). In particular try it
respectively without one of the two components of the energy (wElast=wStiff=0
then wExt=0). What are the problems in each case?

3.5 Bluring the input image

Evaluate the behavior of the algorithm without bluring the input image
(put sigma to 0 in snake.cpp). For this question, use rectangle.png and rectan-
gleNoisy.png. What can you notice (benefits and drawbacks of the blur)?

3.6 Bonus question

What are the principal drawbacks of the current implementation. What can
you propose to improve it.

References

[1] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. In: First
international conference on computer vision; 1987. p. 259–68.

[2] Li, T. and Zhang, Y. and Yao, D. and Hu, D. FFT snake: a robust and
efficient method for the segmentation of arbitrarily shaped objects in image
sequences : ICPR 2004 p.II: 116-119

4


	Programming using the CImg library 
	``Hello, Lena''
	National flag of France

	Snake
	continuous formulation
	Discrete formulation
	Minimization

	Exercices
	External energy
	Optimization
	Test
	Internal versus External energy
	Bluring the input image
	Bonus question


