
TP3: Optical Flow

Loic Simon Chaohui Wang Panagiotis Koutsourakis

16 May 2008

1 Theory

The aim of this lab is to compute the optical flow of an image under the
assumption that the intensity of the moving pixels remains constant. In other
words, we are considering a sequence of images (I(t){t=1···T}) taken from a
deformable scene which color doesn’t change along time. Because of this defor-
mation, pixels are moving along the sequence, and we are trying to figure out
what is the path of each pixel x0(t) = (x0(t), y0(t)) given its initial position x0.
The hypothesis of constant intensity can be expressed as follows:

I(x0(t), t) = I(x0, 0) (1)

Taking the derivative of the former equation we get,

0 =
d

dt
I(x0(t), t) = ∇I.u + It (2)

where u = (ux, uy) = dx0
dt = dx0 is the displacement of the pixel. Note that

equation ?? is not sufficient to determine u (which is the unknown quantity
we’re trying to find out). In this kind of under-constrained problem, a common
way to remove the indeterminacy is to express this problem as an optimization
one. One possible choice (among others) is to minimize the following energy:

E(u) =
∑
x

gx0(x) [∇I(x, t).u + It(x, t)]2 (x) (3)

(Here gx0 is a Gaussian filter centered at x0).
The minimum is achieved when the derivative of E vanishes :

∂E(ux, uy)
∂ux

=
∑
x

gx0(x)
[
uxI2

x + uyIxIy + IxIt

]
(x) = 0 (4)

∂E(ux, uy)
∂uy

=
∑
x

gx0(x)
[
uyI2

y + uxIxIy + IyIt

]
(x) = 0 (5)

where, Ix, Iy and It represent respectively the derivative of the image se-
quence relatively to x, y and t. This linear system can be expressed as follows:

Mx0u = bx0 (6)

1

where,

Mx0 =
(∑

gx0I
2
x

∑
gx0IxIy∑

gx0IxIy

∑
gx0I

2
y

)
(7)

bx0 = −
(∑

gx0IxIt∑
gx0IyIt

)
(8)

(9)

2 Computation

You have all the following files.

• opticalflow.cpp: main function.

• libEcp.h: auxiliary functions among which the display functions and those
computing the flow. You will have to modify the function computeOpti-
calFlow.

• EcpException.h

The data sets are available in the directories named Dataset* and you can
load them using the loadImages instruction called in the main function.

The computations you’ll have to do consist in :

1. evaluating the derivative images Ix,Iy and It for each image of the se-
quence.

2. computing their pairwise product (I2
x, IxIy, . . .).

3. convolving them with a Gaussian filter (explain where this convolution is
involved).

4. use the previous results to compute Mx0 and bx0 for each pixel x0 and for
all t.

2.1 derivative and convolution

Every function in this lab is defined on a discrete grid (pixel location and
time are discrete variables). Therefore, derivative have to be approximated with
a finite difference scheme.

For instance It can be computed in the simple manner that follows

It(x, y, t) =
I(x, y, t + 1)− I(x, y, t+)

1
(10)

or in a more sophisticated way.
For the same reason you have to use the discrete convolution formula:

f ∗ g(x0, y0) =
∞∑

x,y=−∞
f(x, y)g(x0 − x, y0 − y) (11)

(in fact this is already implemented in CImg)

2

2.2 Optical flow computation

To finish, after you computed Mx0 and bx0 , you have to invert the system
?? in order to obtain u, ∀x0.

2.3 Visualization

You can eventually visualize the optical flow using the visualizeOpticalFlow
functions.

3

