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1 Theory

1.1 Cross-correlation

The normalized cross-correlation is a measure of the similarity between
patches (i.e sub-windows) of different images. Its value is a real number be-
tween -1 and 1. Two similar windows have a high cross-correlation. Given two
patches u and v, of equal size n× n, their cross-correlation is :

C(u,v) =
〈u− ū,v − v̄〉
‖u− ū‖‖v − v̄‖

(1)

where ū and v̄ are the mean values of the respective patches.
Intuitively, the cross-correlation can be thought as a normalized dot product,

in other words it corresponds to the cosine between the vectors u− ū and v− v̄.
Based on this simple similarity measure, we can define a patch tracking

approach for a sequence of images. Assuming that the object to track does not
move too quickly, one can look in the next frame for the patch that best fits
the one in the current frame. Here “best fits” means the one with the highest
cross-correlation.

1.2 Kalman filter

The kalman filter is a linear technique to filter discrete data. It is well fitted
to the study of dynamic systems, for which the evolution models are known.
Let xt ∈ Rn the vector encoding the state of the system we are focusing on (at
time t). Let’s assume that this system evolves following a linear and discrete
process:

xt = Axt−1 + wt−1 (2)

In the previous equation, wt−1 is a 0 mean Gaussian noise with covariance
matrix Q. A is a n× n matrix that encodes the transition from the previous to
the current state.

Apart from that, a partial measurement zt ∈ Rm (m < n in general) is made
on the state:
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zt = Hxt + vt (3)

Commonly, the noise vt is assumed Gaussian, with 0 mean and independent
from wt. Let’s denote R its covariance matrix.

The Kalman filter takes both the evolution law and the measurement into
account, in order to evaluate the system’s state. It proceeds iteratively in two
steps:

1. Predicting : A first guess x̂−t is estimated as well as an error quantity
(the covariance matrix P−t ).

x̂−t = Ax̂t−1 (4)
P−t = APt−1A

T + Q (5)

2. Correcting This step add a correction based on the measurement zt. We
call xt a posteriori estimation:

Kt = P−t HT (HP−t HT + R)−1 (6)
x̂t = x̂−t + Kt(zt −Hx̂−t ) (7)
Pt = (I −KtH)P−t (8)

The matrix Kt called filter gain can be thought of as an inverse of H. If
interested in further details, one can have a look at the following intro-
duction to Kalman filtering: http://www.cs.unc.edu/%7Ewelch/media/
pdf/kalman_intro.pdf

The idea here is to use the kalman filter to combine the information from a
prior knowledge on the motion (eg constant speed,. . . ) and the given measure-
ments (an estimation of the position based here on the cross-correlation).

2 Computation

2.1 Tracking based on cross-correlation

Complete the function measureCrossCorrelation which arguments are
the current frame, the patch representing the selected target, the position of the
target in the previous frame, and the half-width (searchdx) and half-height
(searchdy) of the search window. This function aims at computing the position
of the window in the current frame that gives the maximum cross-correlation.

2.2 Kalman tracking

1. Explain how you can define a state vector to encode a constant velocity
constraint ; how many components would have the state vector? What
would be their meaning? Give details on how you would define the matrix
A.
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2. Fill in the function twoStepKalmanFiltering to implement both steps
of the Kalman filter. This function takes as arguments the previous state
estimator previousState (x̂t−1), the estimated error at previous state
PkPrevious (Pt−1), the measurement (zt) as well as the matrices A
,H, Q and R. It computes the new state estimator (x̂t) currentState
and the error (Pt) PkCurrent.
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