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1 Theory

1.1 Harris Corner Detector

The Harris corner detector was proposed by Harris in 1988 [1]. It is one of
most popular interest point detectors due to its invariance to rotation, scale,
illumination variation and image noise [2]. This detector is based on the local
auto-correlation function of a signal, which measures the local changes of the
signal with patches shifted by a small amount in different directions.

Given a shift (Az, Ay) and a point (z,y), the auto-correlation function is
defined as:
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where I(-, -) denotes the image function, (z;, y;) the points in the window Q(z, y)
which is centered on (z,y), and G(; ) (,-) a Gaussian kernel function also cen-
tered on (x,y).

If the displacement is rather small, the shifted image can be approximated by
a Taylor expansion truncated to the first order terms. Thus we get the formula
below:
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where I,(-,-) and I(-,-) denote respectively the partial derivatives in the & and
y direction.
And then, by substituting Eq. 2 into Eq. 1, we can get:
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where M (z,y) is as:
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Note that the matrix M(z,y) captures the intensity structure of the local
neighborhood. Let A1, Ay be the eigenvalues of matrix M (z,y). The eigenvalues
form a invariant description with respect to rotation. For each pixel (z,y) , there
are three principal cases depending on the eigenvalues:

M(z,y) =

1. If both Ay, Ay are small, the local auto-correlation function approxima-
tively vanishes in any direction. We consider thus that the small image
region around the pixel (z,y) is of approximately constant intensity.

2. If one eigenvalue is high and the other is low, the local auto-correlation
function is ridge shaped, which means that a local shift along the ridge
causes little change in M(z,y) and significant change in the orthogonal
direction. This indicates that an edge passes (z,y);

3. If both eigenvalues are high, the local auto-correlation function is sharply
peaked, which means that a shift in any direction will result in a significant
increase of M (z,y). This indicates that there is a corner on (x,y).

In order to avoid the calculation of the two eigenvalues, we use instead the
response function R defined in formula 5 to distinguish the three cases above.

R(z,y) = det(M (z,y)) — k- (trace(M (z,y))) ()

Note that k = 0.04 is a empirical value which is usually used in the literature.
We can verify that A\; - Ao = det(M) and A\; + Ao = trace(M). Thus we can
consider that R(x,y) is negative (with relatively big absolute value) for a point
on the edge, close to 0 for a point in the homogeneous zone, and relatively big
positive value for a point on the corner. Therefore, a point is considered as a
corner if R > s where s > 0 is a certain fixed threshold predefined by the user.

1.2 K-means Algorithm

The K-means algorithm is an common classification algorithm which is usu-
ally used to partition the given data which is composed of N unlabeled objects
{r1,%2,...,2n} into K clusters {G1,Ga,...,Gkg} (K < N). The goal of this
algorithm is to minimize the squared error function:
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where py (k€ {1,2,...,K}) is the center(mean) of the cluster k.

The idea of K-means algorithm is to minimize the squared error V iteratively
by choosing the partition of data and by updating the center of the clusters,
which can be summarized as the following steps:



1. Initialize the centers of K groups, i.e.: up (k€ {1,2,...,K})
2. Partition the N objects into K groups using the labeling method as:
ln = argmin ||z, — ) (7)

where [,, represents the index of the group to which x, should belong.

3. Update the center for each group:
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4. Repeat the steps 2 and 3 until the error V' can’t descend any more. In
practice, we can detect this by observing if the centers of those groups
(or the labelings of all the objects) don’t change between two consecutive
iterations.

We can use K-means algorithm to partition the detected interest points into
several coherent groups. The classification will be done using the descriptors
of these points. A simple choice of descriptor consists in using the intensity of
those points around a considered point. We can also use those descriptors more
complex like STFT, which is based on a histogram of orientation of the gradients
in a patch centered on the considered point.

2 Computation

2.1 Corner Detection

Complete the function harrisCorners which takes an image src¢ as input
argument and the parameter k in formula 5 is fixed as 0.04. This function
calculates the value of R (c.f.: formula 5) for each point of the input image and
stocks them in a matrix harris, which is a Clmg object.

2.2 Classification of descriptors using K-means
Complete the function kMeans which has four input arguments:

1. points: a list of points. In our exercise, these points are the Harris corners
detected in the last exercise

2. pointsAssignment: the initialization of the labeling of each point
3. centers: the initialization of the list of all the clusters’ centers
4. centerN: the number of clusters

The objective of this function is to update pointsAssignment and centers using
the K-means algorithm introduced in Section 1.2.
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