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1 Theory

1.1 Projective Space

The projective space of dimension n, Pn is the quotient1 space of Rn+1 \
{0n+1} defined by the following equivalence relation:

[x1, . . . , xn+1]t ∼ [x′1, . . . , x
′
n+1]

t ⇔ ∃λ 6= 0, [x1, . . . , xn+1]t = λ[x′1, . . . , x
′
n+1]

t

Note that this relation is clearly reflexive, symmetric and transitive.
The points of Pn that satisfy xn+1 6= 0 have an equivalent in the euclidian

space Rn [ x1
xn+1

, . . . xn

xn+1
]t. The points that satisfy xn+1 = 0 don’t have and

Euclidean equivalent and are called the points at infinity.

1.2 The pinhole camera model

The pinhole camera model allows us to describe the process of the acquisition
of an image by the projection of the 3D points, to some 2D points situated on
the retinal plane. Let C be the optical center of the camera. The projection of
a 3D point M is the intersection of the optic ray CM with the retinal plane as
you can see in figure 1.

Let M = [x y z]t be a point of the Euclidean 3D space and m = [u v]t its
projection. Let M̃ = [x y z 1]t and m̃ = [u v 1] be the corresponding points in
homogeneous coordinates. In order to formalize the projection process we write:

PM̃ = m̃

where P is a 3× 4 projection matrix.
1The quotient space is the set of equivalence classes.
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Figure 1: The pinhole camera model

1.3 Decomposition of the projection matrix

In this part we define 2 coordinate frames: one linked to the scene (which
we can choose) and the other linked to the camera. The origin of the camera
reference frame is the center of the camera and its axes are the axes of the
retinal plane and the optical axis (this is the axis that passes from the camera
center and is normal to the retinal plane).

It can be shown that the projection matrix P is decomposed as follows:

P = K [R|T]

where:

- K is a 3× 3 matrix that contains the intrinsic parameters of the camera
(these are the parameters that depend only on the internal configuration
of the camera). This matrix describes the reference frame of the retinal
plane. We can write it in the following form:

K =

fu γ u0

0 fv v0

0 0 1


fu and fv are the focal distances expressed in pixels. [u0 v0] are the
coordinates of the principal point, i.e. the intersection point of the retinal
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plane with the optical axis. Finally γ is called skew parameter and is 0
for most normal cameras.

- [R|T] represents the pose of the camera in the scene reference frame.
This rigid transformation allows us to transform the 3D points of the
scene reference frame to the camera reference frame. R is a 3× 3 rotation
matrix and T is a 3 × 1 translation vector. R and T are the extrinsic
parameters of the camera.

Note that the projection matrix depends on 11 parameters: 5 intrinsic pa-
rameters and 6 extrinsic parameters (3 for rotation and 3 for translation). The
process of calibration of a camera consists in estimating its intrinsic and/or
extrinsic parameters.

1.4 Calculation of the projection matrix from 2D-3D cor-
respondences

Returning to the following equation:

PM̃ = m̃

we can write:

P =

Pt
1

Pt
2

Pt
3


That means that Pi is the ith line of P, written as column vector and therefore
is of dimension 4× 1. For example P1 = [P11 P12 P13 P14]t. It is important to
understand that this equation gives two independent equations depending on
the elements of P:

〈P1, M̃〉
〈P3, M̃〉

= u

〈P2, M̃〉
〈P3, M̃〉

= v

(1)

where (u, v) are the euclidean coordinates of the point m̃.
Equations (1) can be written in the following form:

〈P1, M̃〉 − u〈P3, M̃〉 = 0

〈P2, M̃〉 − v〈P3, M̃〉 = 0
(2)

Equations (2) are linear with respect to the elements of P. If there are n
correspondences, we obtain a homogeneous linear system AP = 0, where A is
one 2n× 12 matrix and

P = [P11 P12 P13 P14 P21 P22 P23 P24 P31 P32 P33 P34]t
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In order to avoid the trivial solution P = 0 and knowing that the projection
matrix can only be determined up to a multiplying factor, we are going to refor-
mulate the problem of solving the linear system in the form of an optimization
problem:

min
‖P‖2=1

‖AP‖2 (3)

We can show that the solution to this problem can be obtained by computing
the singular value decomposition (SVD) of the matrix A and taking the vector
corresponding to the smallest singular value.

1.5 Extraction of intrinsic and extrinsic parameters from
the projection matrix

We remind that the projection matrix can be decomposed as follows:

P = K [R|T]

The objective is to find K, R and T from P. To this end we are going to use
the QR decomposition. We remind briefly here that we can decompose one
square matrix M as M = QR where Q is an orthogonal matrix and R is an
upper triangular matrix (do not comfuse this R with the rotation matrix R).

Let A be the upper left 3 × 3 submatrix of P, i.e. it contains the elements
Pij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. Thus A = KR. We perform a QR decomposition
on A−1:

A−1 = QL

with Q orthogonal and L upper triangular. This gives:

A = L−1Q−1 = L−1Qt

where K = L−1 and R = Qt. When computing K and R don’t forget to
normalize K (and thus P) in order to have K33 = 1. After that, finding the
translation vector is easy.

2 Computation

Take care: an m×n mathematical matrix, is represented in the CImg library
by an n×m CImg<double> object.

2.1 Computation of the projection matrix

Complete the function computeProjectionMatrix that takes as arguments a
set of 3D points in projective coordinates points3D (of dimension 4×n) and the
set of corresponding 2D points of the image in Euclidean coordinates points2D
(of dimensions 2× n). This function calculates the matrix projectionMatrix.
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2.2 Extraction of intrinsic and extrinsic parameters

Complete the function computeParameters that takes as arguments the
projection matrix projectionMatrix and calculates the intrinsic parameters
matrix intrinsicParameters (K) the rotation matrix rotation (R) and the
translation vector translation (T). This function should call the auxiliary
function QRdecomposition that is already coded, that performs the QR decom-
position of a matrix.
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